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Function Algebras in the Fifties and Sixties1 

JOHN WERMER? 

1. INTRODUCTION 

This essay is a very personal survey of a chapter of mathematical history 
in which I participated, the study of Function Algebras in the U.S. in the 
period 1950-1970. For obvious reasons the survey is very incomplete, as is 
the bibliography. For a balanced view of the subject the interested reader 
can consult three excellent works: Introduction to Function Algebras by A. 
Browder, W. A. Benjamin, Inc. ( 1969), Uniform Algebras by T. W. Gamelin, 
Prentice Hall, Inc. ( 1969), and The Theory of Uniform Algebras by E. L. 
Stout, Bogden and Quigley, Inc. ( 1971 ). 

Starting in the early 19 50s a band of American mathematicians went to 
work on some questions in complex analysis which came from two sources: 
the theory of polynomial approximation on compact sets in the complex 
plane, and the theory of commutative Banach algebras. The American math­ 
ematicians included Richard Arens at UCLA, Charles Rickart at Yale, Ken 
Hoff man and Iz Singer at MIT, Andy Gleason at Harvard, Hal Royden at 
Stanford, Errett Bishop at Berkeley, Irv Glicksberg at the University of Wash­ 
ington, Walter Rudin at Rochester and the University of Wisconsin, and the 
author at Brown. They and their students began to develop a theory of Func­ 
tion Algebras which formed a new link between classical Function Theory and 
Functional Analysis. Their inspiration came largely from the Soviet Union. 

1 A good discussion of many of the topics of this article, as well as a very extensive bib­ 
liography, is given in the article by G. M. Henkin and E. M. Cirka, Boundary Properties of 
Holomorphic Functions of Several Complex Variables, Plenum Publishing Corporation ( 1976). 

2 I am grateful to Andy Browder and Peter Duren for helpful comments for this article. 
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In the 1940s I. M. Gelfand and his coworkers had built a theory of com­ 
mutative Banach algebras in which they had shown that such an algebra, if it 
has a unit and its radical is zero, is isomorphic to an algebra 2l of continuous 
complex-valued functions on a compact Hausdorff space mt. The points of mt 
are identified with the maximal ideals of 2l. G. Silov had shown that among 
all closed subsets of mt there exists a smallest set S with the property that if 
m is in 9)l, then for each f in 2 

[f(m)] < max]f(x)] taken over S. 
S is called the Silov boundary of the algebra. 

A simple model for this is given by the disk algebra A(D) consisting of all 
functions which are analytic in the open unit disk: [z] <1 and continuous in 
the closed disk D: [z] < 1. Here the maximal ideal space 1 can be identified 
with D and the Silov boundary with the unit circle: [z] = 1. The natural 
norm on A(D) is given by 11/11 = max [f(z)\, taken over D. 

The question arises: let 2 be an arbitrary semi-simple commutative Banach 
algebra with unit, such that S is nontrivial, i.e., S is strictly smaller than mt. 
Does there exist an abstract function theory for 1, i.e., do the functions in 2 
behave on mt\S like analytic functions (as in the example of the disk algebra)? 
Furthermore, does 901\S possess analytic structure, i.e., can we find subsets 
of 9\S which can be made into complex manifolds on which the functions 
in 2l are analytic? If enough such analytic structure could be shown to exist, 
this would explain the Silov boundary in terms of the maximum principle of 
analytic function theory. 

In 1952 a brilliant achievement by the Soviet Armenian mathematician S. 
N. Mergelyan provided a second source of inspiration. Mergelyan showed in 
[48] that if Xis a compact set in the z-plane C such that C\X is connected, 
then every function which is continuous on X and analytic on the interior of 
X can be uniformly approximated on X by polynomials in z. This result can 
be read as a statement about a certain Banach algebra. We let P(X) denote 
the uniform closure on X of the polynomials in z and we put on P(X) the 
supremum norm over X. Then P(X) is a Banach algebra, the maximal ideal 
space mt coincides with X, and the Silov boundary S coincides with the 
topological boundary of X. Mergelyan's theorem yields that a function p 
defined and continuous on mt belongs to P(X) if and only if is analytic on 
mt\S = int(X) in the natural analytic structure which int(X) inherits from 
C. 

2. UNIFORM ALGEBRAS 
For the problems mentioned above, of constructing an abstract function 

theory for 4 and of exhibiting analytic structure on 91\S, it seemed natural 
to take the norm on the algebra 2 to be a uniform norm. The "Function 
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Algebras" to be studied where then as follows: we fix a compact Hausdorff 
space X and an algebra 24 of continuous functions on X such that 2 is closed 
in the algebra C(X) of all continuous functions on X, contains the constants, 
and separates the points of X. If we put on 24 the uniform norm over X, 2l 
is then a Banach algebra. rot is a compact space in which X lies embedded 

w 9 

as proper subset in general, and Sis a closed subset of X. 
Such algebras were baptised uniform algebras by Errett Bishop in 1964. 

He thought the name sounded good, and it has stuck. One says that 2 is a 
uniform algebra on X. Uniform algebras are plentiful in nature. Here are 
some examples: 

(i) Let Y be a compact set in en, the space of n complex variables. Let 
P(Y) denote the uniform closure on Y of polynomials in the complex coor­ 
dinates z1,...,2,. Then P(Y) is a uniform algebra on Y. 

The disk algebra is a special case. For n = 1 and so Y C C, Mergelyan's 
theorem tells us which functions belong to P(Y). 

(ii) Let :Ebe a finite Riemann surface with boundary O2 and denote by 
A(Z) the algebra of functions continuous on 2 and analytic on 2\02. 4(2) 
is a uniform algebra on 2. 

(iii) Let K be a compact set in C and let R(K) denote the space of rational 
functions whose poles lie in C\K. Let R(K) denote the uniform closure of 
Ro(K) on K. Then R(K) is a uniform algebra on K. 

(iv) Let H00 denote the algebra of all bounded analytic functions on the 
open unit disk. By Fatou's theorem, H° is embedded in L° of the unit 
circle, and I°, in turn, is isomorphic to C(X) for a (complicated) space X. 
H? is a uniform algebra on X. 

(v) The Stone-Weierstrass theorem yields that the only uniform algebra 
on a compact space X which is closed under complex conjugation is the full 
algebra C(X). 

A first indication that it might be possible to do abstract function theory 
on a uniform algebra A was the proof that representing measures always exist. 
By a representing measure for a point m in rot is meant a probability measure 
µ on the Silov boundary S such that for all f in A 

f)= [faa. 

Arens and Singer in [5] and John Holladay in his Yale thesis ( 1953) proved 
that such a µ exists. 

In the case of the disk algebra A(D), is unique for a given m and is the 
Poisson measure on the circle, corresponding to m. In general, µ is far from 
unique. 
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A representing measure µ is multiplicative on A, i.e., 

[raa= (fra,)-(f«a») torat.f,a » 4, 
and conversely, each multiplicative probability measure is the representing 
measure for some point m in mt 

In 1953 in [64] Silov made another fundamental contribution to Banach 
algebra theory by introducing the use of analytic functions of several com­ 
plex variables into the theory. Let 21, VJ? be as above. Suppose that VJ? is 
disconnected, i.e., 9t = 9, US, where 9,,91% are disjoint closed sets. Silov 
showed that Je in with e? = e such that e= 1 on t, and e = 0 on 9,, 
Not long after, Arens and Calderon in [4] and L. Waelbroeck in [68] de­ 

veloped a functional calculus for analytic functions of n variables acting on 
n-tuples of elements of a commutative Banach algebra. 

Another application of several complex variables to Banach algebra theory 
was the algebraic description of the first cohomology group of the maximal 
ideal space, independently by R. Arens in [3] and H. Royden in [58]. They 
showed that for 21,9 as above, H' (m, Z) is isomorphic to the quotient group 
of the group of units of 2 by the subgroup of elements exp(y) with y in 2. 

3. GLEASON'S PROGRAM 
Andrew Gleason launched the earliest attacks on the problem of analytic 

structure in the maximal ideal space of a uniform algebra. 
In the case of the disk algebra A(D) those maximal ideals m corresponding 

to an interior point of the disk, say the point a, have the algebraic property 
of being simply generated: every f in the ideal m can be written in the form: 
f =g(z- a) with g in A(D). Maximal ideals corresponding to boundary 
points of D are not simply generated. Gleason obtained the following striking 
result: Let A be a uniform algebra and .fix m in 9. Suppose that the ideal m 
is finitely generated in the algebraic sense. Then some neighborhood U of m 
in 9t can be given the structure of an analytic variety such that every h in A 
is analytic on U. 

He lectured on this result in the mid-fifties, and published it in [29]. 
In another direction, Gleason observed the following: with A,0l as before, 

let my,m; be two points in 9l. Then [f(m) - f(m;)] < 2 whenever f 
belongs to the unit ball of A. It may happen that there exists k <2 such 
that lf(mi)- f(m2)1 ~ k whenever f belongs to this unit ball. In the case of 
the disk algebra, this occurs whenever m 1 and m2 lie in the open unit disk. 
This suggests the following general definition: for m\,m; in t, put m; - mo 
whenever 3 such a k <2,0r, in other words, whenever the distance from m1 
to m in the dual Banach space of A is less than 2. Gleason showed that ~ is 
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an equivalence relation on mt (Since 2+2 = 4, the transitivity of the relation 
~ is not evident!) He called the equivalence classes under ~ the parts of mt. 

For the case of the disk algebra A(D), the open unit disk is one part and 
each point on the unit circle is a one-point part. For the case of the bi-disk 
algebra A(D2) which consists of all functions which are continuous on the 
closed bi-disk D2 = {lzl ~ 1} x {w\ < 1} in C? and analytic on the open bi­ 
disk, the maximal ideal space mt = D},and the parts are as follows: the open 
bi-disk is one part, each disk: z = z9,[w] <1 and each disk: [z] <1,w= wo 
with [zo] = 1 and [wo] = 1 is a part; the remaining parts are the one-point 
parts on the distinguished boundary {[z] = l} x {[w] = l} of D?. Thus the 
parts here are complex manifolds of dimensions 2, 1, and 0. 

Gleason lectured on these ideas, [28], at the Conference on Analytic Func­ 
tions at the Institute for Advanced Study in Princeton in September, 1957. 
This was a marvelous meeting. The people there interested in Banach alge­ 
bras included R. Arens, R. C. Buck, L. Carleson, A. Gleason, K. Hoffman, S. 
Kakutani, Lee Rubel, H. Royden, I. Kaplansky, L. Waelbroeck, and myself. 
Many of the giants of function theory gave talks, both on one and several 
complex variables, and tolerated those of us who didn't know much about ei­ 
ther one or several complex variables. The two weeks of the conference were 
for us enormously stimulating and provided the germ of much later work on 
Function Algebras. 

Kakutani had studied H° as a Banach algebra, and reported on his work 
in [41]. At the conference, he discussed the boundary behavior of a bounded 
analytic function in terms of normed ring theory, [42]. 

Earlier, Kakutani had raised the following basic question about H° as a 
ring: the open unit disk is naturally embedded as an open subset A of the 
maximal ideal space 9 of H", and so its closure A is contained in 9. The 
set mt\X was called the Corona". 
Is the Corona empty, i.e., is A dense in mt? Suppose that the answer is 

"Yes" and consider an n-tuple of functions f; in H° with >}_] \f;] > 6 on 
A, where 6 is a positive constant. Then Y;_\;/ > 6 on 9t and so the f; have 
no common zero on mt. Hence the ideal generated by the f; is contained in 
no maximal ideal of H00 and so is the whole ring. It follows that there exist 
gy in H°, j = 1,...,n, such that 

n Yr=­ 
j=I 

The problem of the existence of the Ki under the given assumption on the 
fj turned out to be a very deep problem. This "Corona problem" was solved 
by Lennart Carleson in [22], and it follows that the Corona is indeed empty. 
Carleson's result and his method of proof has had a major impact on analysis. 
All this is treated in John Garnett's book mentioned in Section 7 below. 
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A breakthrough in the understanding of the maximal ideal space of H® 
occurred at the conference, in the form of the birth of I. J. Schark, [62]. 
Schark's paper exhibited analytic structure in L\ll for the first time. Schark 
never published again, since his name was put together from the initials of 
participants at the conference. So Schark did not perish; he vanished. 
In his talk, Gleason formulated the following Conjecture: Let m,my be 

two points in the maximal ideal space of a uniform algebra. Then a nec­ 
essary and sufficient condition for m; and m» to be in the same part of 9t is 
that m; and m» can be connected by a finite chain of analytic images of the 
unit disk, contained in VJl. A second idea Gleason introduced in [28] was the 
notion of a Dirichlet Algebra. The real parts of the functions belonging to 
a uniform algebra A on a space X can be viewed as "harmonic" on 9\X, 
as can uniform limits on 91 of sequences of such functions. Gleason called 
A a Dirichlet Algebra on X if every real continuous function on X is the re­ 
striction to X of such a harmonic function, or, equivalently, if the real parts 
of functions in A form a uniformly dense subspace of the real continuous 
functions on X. 

The disk algebra A(D) may be viewed as a uniform algebra on the circle 
[z] = 1, with norm the supremum norm on the circle, rather than as a uniform 
algebra on the disk. A(D) is a Dirichlet algebra on the circle. 

Gleason wrote in [28) about Dirichlet algebras: "It appears that this class 
of algebras is of considerable importance and is amenable to analysis." It 
turned out subsequently that this preliminary judgment was right on target. 
At the time, in September 1957, Gleason's ideas were sufficiently strange and 
novel that I ( and many of us, I imagine) did not fully grasp their significance. 

4. THE SUMMER OF 1959 IN BERKELEY 
In the summer of 1959 a lot of people working on Functional Analysis 

gathered, rather informally, in Berkeley. My wife Kerstin and I took our two 
boys, two and five years old, put them in our Chevy and drove across the 
country. It had been hot when we left the East Coast and got steadily hotter 
as we drove west until suddenly, as we came into Berkeley, a discontinuity 
occurred and we were in a cool and lush paradise, the sky blue, the air balmy, 
and all garden flowers blooming wildly. 

I had along with me a recent paper by Henry Helson and David Low­ 
denslager, [33], in which they studied certain spaces of functions given by 
Fourier series on the torus. Earlier, Arens and Singer in [6], and Mackey in 
[ 47), had given a group-theoretic' approach to analytic functions, based on the 
following observation: A Fourier series f(x) = 2,, c,e on the unit circle 
is the boundary function of a function analytic in the unit disk if and only 
if c, = 0 for n < 0. Replacing the circle by the torus, one may consider 
Fourier series f(0,0) = ,,, ceem? in two variables. One specifies a 
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half-plane Sin the lattice Z? and regards f to be analytic", relative to S, if 
Cm = 0 outside of S. An interesting example is obtained by taking S to be 
the set of points (n,m) in Z? with n + ma > 0, where is a fixed irrational 
number. Helson and Lowdenslager showed in [33] that a series of classical 
boundary value theorems of function theory have counterparts for functions 
"analytic relative to S". Their results were dramatic and their proofs made 
elegant use of L--methods. Their paper stirred Solomon Bochner's interest, 
as he had looked at related questions at an earlier time. He showed that their 
proofs depended only on two properties: first, that for fixed S the class of 
S-analytic functions continuous on the torus is an algebra, and second, that 
the real parts of the functions in this algebra are dense in the real continu­ 
ous functions on the torus. The group structure on the torus entered only 
through these properties. So Bochner, quite independently of Gleason, was 
led to the same Dirichlet algebras [19]. Thus it turned out that certain ba­ 
sic results about boundary-functions of analytic functions in the disk remain 
true, when properly stated, for an arbitrary Dirichlet algebra. How does this 
look? 

For the case of the disk algebra, the measure ;d0 is the representing 
measure for the origin. For p ~ l,the Hardy space HP is defined as the 
closure of A(D) in LP on the circle with respect to this measure. Let now A, 
on X, be a Dirichlet algebra and fix min Wt Letµ be the unique representing 
measure form on X, for the algebra A. We define HP(p) as the closure of 
A in IP(X,). For f in HP(), f(m) is defined as Jfd. One then has, for 
instance, the following: 

THEOREM 1. Let A, m, µ be as above. Fix a nonnegative function w on X 
which is summable with respect to µ. A necessary and sufficient condition for 
w to have a representation 

w(x)= [f(x)]° a.e.-d on X 
for some f in H() with f ( m) 0 is that 

f logw • dµ > -oo. 
THEOREM 2. Let W be a closed subspace of H2 (µ) invariant under mul­ 

tiplication by elements of A, i.e., such that f rp E W whenever € W and 
f E A. Assume also that I is not orthogonal to W. Then there exists a 
bounded function E» in W with \Eo(x)]= 1 a.e.-d such that 

w ={Eog\g c H()}. 
Theorems 1 and 2, in the case when A is the disk algebra, are classical 

results of, respectively, Szego and Beurling. 
When I realized, in Berkeley, how all these things fitted together I got 

quite excited. John Kelley and Errett Bishop had been studying Dirichlet 
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algebras, and tutored me in the subject, and I also had the benefit of talking 
to Helson about his work with Lowdenslager. So I was able to prove the truth 
of Gleason's conjecture about parts, for the case of Dirichlet algebras, in the 
following form: Let A be a Dirichlet algebra, VJ? its maximal ideal space and 
P a part of9. Then either P is a single point, or P is an analytic disk, i.e., 
P is the one-one image of the disk [] <1 by a continuous map y such that 
hoy is analytic on \] < 1 for each h in A [72]. 

When we left Berkeley to go home at the end of August, we ran into 
several people at gas stations and so on, whom we had met upon arriving, 
who had noted the Rhode Island plates on our car and had told us that they 
themselves came from the East. When they realized we were going back, 
they were amazed: "You've seen California and you're going back East!" 
they said. My five-year-old son said, "Let's go home to America!" (meaning 
Providence, Rhode Island). 

5. ERRETT BISHOP AND THE GENERAL THEORY 
OF UNIFORM ALGEBRAS 

Dirichlet algebras were almost too good to be true. The general uniform al­ 
gebra is much less tractable, largely due to the nonuniqueness of representing 
measures for fixed points m in rot. However, a series of results about general 
uniform algebras was discovered, with important applications to many ques­ 
tions in analysis. In this general theory, the unquestioned leader was Errett 
Bishop. Bishop was on the faculty at Berkeley from I 954 to 1965 and then 
on the faculty of the University of California at San Diego until his untimely 
death in 1983. 

He was one of the most remarkable people I have known. He was a math­ 
ematician of amazing insight and penetration, absolutely fearless and with a 
profound commitment to mathematics. In his last years he was somewhat 
isolated in the mathematical community, because of his absolute dedication 
to constructive methods in mathematics. 

In the period about which I am writing, Bishop's work and personal contact 
with him was enormously stimulating to the rest of us, and led to much work 
by other people, both jointly with him and independently of him. There 
was the famous joint work by Bishop and Karel de Leeuw on the Choquet 
boundary and by Bishop and Phelps on Banach spaces. Stolzenberg and 
Bishop worked closely together on polynomially convex hulls, as did Rossi 
and Bishop on problems about complex manifolds. My own work on analytic 
structure in maximal ideal spaces, e.g. in the joint paper [7] with Aupetit, and 
work on the same problem by Gamelin in [27], grew out of Bishop's rich paper 
[15]. And so on. 
Here I can only mention a few of Bishop's contributions to the general 

theory of function algebras. The interested reader is referred to [16], [18], 
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[56] for more extensive discussions of his work. Further, his collected papers 
appear in [76]. 

(i) Peak points. A point xo in X is called a peak point for the uniform 
algebra 4 on the space X if 3 f in A with f(xo) = 1 and [f(x)] < 1 on 
X\{x6}. In [11] Bishop showed that for X metrizable peak points exist and 
the set M of all peak points is a minimal boundary for A in the sense that 
for each gin A there is some point x in M with g(x) = IIKII, and, of course, 
no proper subset of M has this property. It follows that Mis a dense subset 
of the Silov boundary S. Moreover, if m is a point of wt there exists a 
representing measure form which lies on M. 

The existence of peak points had earlier been observed by Gleason (un­ 
published). 

Bishop was able to apply the notion of peak point to the problem of rational 
approximation. Let X be a compact subset of C. As in Section 2 above, we 
write R(X) for the uniform closure on X of those rational functions which 
are analytic on X. When does R(X) = C(X)? Clearly, for this to happen 
the interior of X must be empty. When X has connected complement in C, 
Mergelyan's theorem shows that this is also sufficient. However, in general 
the condition is not sufficient, and to show this Mergelyan in 1952 in [48] 
constructed the following set S: remove from the closed unit disk [z] < 1 
a countable family of disjoint open disks: [z-a;]\ <r;, j = 1,2,... such 
that 2,r; <co, and denote by S the closed set that remains. By Cauchy's 
theorem, the complex measure dz on the union of the circles [z-a;] = r; 
together with the unit circle annihilates R(S), and hence R(S) ± C(S). If 
Aj,r; are chosen so that the interior of S is empty, we have the desired 
example. For obvious reasons, S is called a Swiss Cheese.·It turned out 
that, in fact, Mergelyan had rediscovered the Swiss Cheese; in 1938 the Swiss 
mathematician Alice Roth had given such an example. The Swiss Cheese 
has been very useful to people constructing counterexamples in the study of 
Function Algebras. My colleague Bob Accola told me that Function Algebras 
is the study of the Swiss Cheese, but this is not strictly correct. 

Let now X be an arbitrary compact subset of C. Bishop showed the fol­ 
lowing: R(X) = C(X) if and only if each point x in X is a peak point for 
the algebra R(X). An extension of this result was found by Donald Wilken 
in [74]. A peak point is always a one-point part of the maximal ideal space. 
For R(X) the maximal ideal space is precisely X. Wilken showed that each 
part of X is either a one-point part, or has positive 2-dimensional Lebesgue 
measure. 

(ii) The antisymmetric decomposition. If A is a uniform algebra on X, a 
subset Y of X is called a set of antisymmetry if every function in A which is 
real-valued on Y is constant on Y. As example we may take X to be the solid 
cylinder {[z] < 1} x {0 <t< 1} and 4 to be the algebra of all continuous 
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functions on X which are analytic on each slice: t =to, [z] <1. Then each 
disk: t = to, lzl :5 1 is a set of antisymmetry. For a general uniform algebra 
A on X Bishop showed in [13]: Let {Ya} be the family of all maximal sets 
of antisymmetry. Then the Ya give a closed partition of X and a continuous 
function f on X belongs to A if and only if each restriction f\, belongs to the 
restriction A\y,. 
If the Ya are the points of X, one recovers the Stone-Weierstrass theorem. 

A less complete result had been obtained earlier by Silo, [63]. Bishop's 
result reduces the study of general uniform algebras to the study of antisym­ 
metric such algebras, i.e., uniform algebras which contain no nonconstant 
real-valued function. 

(iii) Jensen measures. The representing measure i! for the origin for the 
disk algebra A(D) satisfies Jensen's inequality: 

p?" do toe 1/(Ol< ,, Joel/e"1,, 
for each fin A(D). 

Let A be a uniform algebra and fix m in mt Can a representing measure 
µ be found for m which satisfies such an inequality? Arens and Singer had 
shown this to be true in certain cases. In [15] Bishop showed it in general: 
Let A be a uniform algebra, m a point of • There exists a representing 
measure µ for m such that 

log[f(m)]< /toe\fl@ 
for each f in A. 

Such a measureµ is called a Jensen measure form. Jensen measures have 
turned out to be very useful. 

6. IRVING GLICKSBERG AND ORTHOGONAL MEASURES 

Let A be a uniform algebra on the space X. A complex measure v on X 
is called orthogonal to A if 

]fav = 0for every f in A. 
We write 4+ for the family of all such measures. If we know A, then we can 
tell, using the Hahn-Banach theorem, whether a given function h in C(X) 
belongs to A : h E A if and only if 

f hdv = 0 for each v in A. 
The classical theorem of F. and M. Riesz identified all the orthogonal mea­ 
sures for the disk algebra. Frank Forelli's work in [25) gave a function­ 
algebraic approach to this result. 
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In a series of papers [30], [31], [32], the last jointly with me, Glicksberg 
analyzed measures orthogonal to a uniform algebra. He applied his results 
to obtain elegant new proofs of Bishop's results on general uniform algebras, 
as well as to problems in interpolation, approximation, and so forth. 

In [10] and [12] Bishop considered a compact set X in C with C\X con­ 
nected and looked at the measures v on X orthogonal to the algebra P(X). 
He showed that such a measure v always arises from a certain analytic dif­ 
ferential g(z)dz on the interior of X. In [32] Glicksberg and I adapted these 
ideas to Dirichlet algebras. Let A be a Dirichlet algebra on a space X. For 
each m in VJ?, let l be the representing measure form and let H1 (l), as ear­ 
lier, denote the closure of A in L'(X,2). If k € H'(X) and f k·dl=0, then 
k ·dl is orthogonal to A, since if f is in A, 

Jr&a-[frail [f«al-o 
Hence we get "obvious" orthogonal measures for A by forming convergent 
series 

3-, 
i 

where each k, is a representing measure and k, c H(A,) and f k,dl, = 0. We 
showed that every complex measure v in A' has a representation 
() v=Ek-@,+o, 
with k,,k; as above and such that a is orthogonal to A and is singular with 
respect to every representing measure for A. 

As an application, we took a compact plane set X with connected com­ 
plement and boundary ax, and took A = P(X). By the classical Walsh­ 
Lebesgue theorem, P(X) is a Dirichlet algebra on ax. In this case, one can 
show that every measure a appearing in ( 1) vanishes. ( 1) then quickly implies 
Mergelyan's theorem on polynomial approximation on X mentioned earlier. 

Lennart Carleson in [23] gave an ingenious new proof of the Walsh­ 
Lebesgue theorem, and went on to give a proof of Mergelyan's theorem, 
also based on Bishop's ideas. 

Irv Glicksberg was an unusual person. He was ever cheerful, with un­ 
limited enthusiasm and unfailing generosity. He enjoyed every bit of good 
mathematics that he met up with, and it usually stimulated new ideas in him .. 
He was a delightful, indefatigable correspondent, a fanatic photographer, and 
fond of jaunty headgear. Politically, he was a staunch liberal, and so he found 
plenty to get mad about in the last twenty years. On most other questions he 
had a tolerant point of view. 

I was planning to spend a year at the University of Washington with him 
in 1983, when I was shocked to hear of his death. 
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7. FUNCTION ALGEBRAS AT MIT AND AT BROWN 

In the late fifties and early sixties, Iz Singer and Ken Hoffman presided 
over a very fruitful mathematical activity at MIT. Their students during that 
time included Andrew Browder, Hugo Rossi, and Gabriel Stolzenberg, each 
of whom made important contributions to the study of Function Algebras. 

Hoffman and Singer jointly in [38] answered a series of questions on Func­ 
tion Algebras which had been posed by Gelfand. In [37] and [39] they studied 
maximal uniform algebras on a space X, i.e., algebras A such that if B is a 
closed subalgebra of C(X) which contains A, then either B = A or B = C(X). 

A major open problem at that time was to prove a local maximum modulus 
principle for function algebras. If z% is a point in the domain of analyticity 
of a function F and U is a neighborhood of zo, then IF(zo)I ~ max [F] taken 
over the boundary of U. The corresponding statement for a uniform algebra 
A with maximal ideal space rot should be this: fix m in rot and let U be a 
neighborhood of m whose closure lies in 9\S. Then 1/(m)I ~ max 1/1 taken 
over the boundary of U, whenever f € A. Is this true? We all tried to prove 
this, but, lacking insight into several complex variables, we had no luck. At 
last Hugo Rossi showed how to do it. I remember the excitement of a late 
evening phone call, Singer to Rossi when Rossi was in Princeton, where he 
told us about his proof. The secret was a clever use of the solution of the 
Cousin problem in n complex variables. Rossi's paper on this is [55], in 
1960. Much of what has been found about uniform algebras since then has 
depended on this local maximum modulus principle. 

The local maximum modulus principle, as well as various examples of 
maximal ideal spaces which had been worked out in the meantime, as well as 
Gleason's conjecture about parts, all encouraged an effort to prove, in general, 
the existence of analytic structure in 9\$. One way to test this question was 
to look at examples in n complex variables. Let X be a compact set in en and 
let P(X) be defined as in example (i) in Section 2 above. The maximal ideal 
space rot of the uniform algebra P(X) has a natural identification with the 
so-called polynomially convex hull X of X, which had come up in the 1930s 
in the work of K. Oka, [51] and [52]. X consists of all points z= (z],...,2{) 
in C" such that 

[Q(z)] < max ]Q] over X 
for every polynomial Q on C". 
If analytic structure exists on rot\S, then there must be complex analytic 

varieties contained in X\X. Gabriel Stolzenberg in the winter of 1960-1961 
constructed a set X on the boundary of the bi-disk: [z1]< 1, [z±] <1 in C? 
such that neither one of the coordinate projections z+(X) and z;(X) contains 
any open subset of the plane, while at the same time X contains the point 
(0, 0) and hence is larger than X. Then X contains no analytic variety, for 
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else X would contain some proper analytic disk A and then either z;(A) or 
z±(A) would have nonvoid interior [65]. 

Thus the hope for analytic structure in 9\S in the general case was gone 
forever. It was a heavy blow. From the perspective of today, almost thirty 
years later, I should say that Stolzenberg's example taught us that the story 
of polynomially convex hulls is much subtler than we had thought, but that 
some satisfactory understanding of these hulls is starting to emerge at the 
present time. 

Stolzenberg himself made other incisive studies of polynomially convex 
hulls in the sixties, in (66] and [67]. 

In addition to the people just mentioned, MIT had in this period a number 
of junior faculty and academic visitors working on Function Algebras and 
related matters. These included Stephen Fisher, Ted Gamelin, John Garnett, 
Eva Kallin, and Donald Wilken. There was lively interaction between the 
Analysis Seminar at Brown, run by Andy Browder and myself, and these 
MIT people. Hoffman and Singer were good friends of mine, and much of 
my own work arose from conversations with them and others of the group. 

Once, after Ken Hoffman and I had finished a particularly long-lasting and 
noisy mathematical conversation at my home in Providence, my three-and-a­ 
half-year-old son came into the room, waving his arms and spouting a stream 
of nonsense syllables. "I am talking mathematics!" he told us. 

Among the Ph.D. students working on Function Algebras who wrote their 
theses at Brown were Andy Browder and Robert McKissick, both borrowed 
from MIT; further Mike Voichick, John O'Connell, Bernie O'Neill, and 
Richard Basener (my students), Al Hallstrom, Jim Wang, and Kenny Preske­ 
nis (Browder's students), and Tony O'Farrell (Brian Cole's student). Stu 
Sidney (Gleason's student) and Lee Stout (Rudin's student) were part of this 
same mathematical generation, as were Mike Freeman and Laura Kodama, 
Bishop's students. H. S. Bear (John Kelley's student) is in this group, and 
Barney Weinstock (Hoffman's student) came somewhat later. Larry Zalcman 
was an MIT graduate student in this period. He wrote the volume Analytic 
Capacity and Rational Approximation [75], which gave a very valuable expo­ 
sition in English of the recent work of Vituskin and his school on the algebra 
R(X), example (iii) in Section 2 above. 

Andy Browder joined the Brown department in 1961. One result qf Brow­ 
der's thesis concerned the topology of polynomially convex sets, i.e., sets x 
which coincide with their polynomially convex hull: let X be such a compact 
set in C". Then the kth Cech cohomology of X with complex coefficients 
vanishes for k ~ n (20]. It follows in particular that if Y is a compact ori­ 
entable n-manifold in C", then Y is larger than Y. Identifying the set of "new 
points" r\Y has turned out to be a difficult problem, only partially solved 
even for 2-manifolds in C2• 



428 JOHNWERMER 

Eva Kallin joined the Brown faculty in 1965. B. Weinstock and G. Stolzen­ 
berg also taught at Brown for some years in the sixties. Kallin had written 
her thesis at Berkeley, with J. L. Kelley, and in it she had solved the following 
famous problem: if a function belongs locally to a uniform algebra A, must 
it belong to A? More precisely, if A is a uniform algebra and if a function 
f continuous on rot has the property that each point m in rot has a neigh­ 
borhood U such that flu = Flu, for some Fin A, does then f belong to 
A? Kallin [43] gave a counterexample. G. Silov who had earlier published 
an erroneous proof of the result, sent her a congratulatory postcard. Another 
result of Kallin's concerned the n balls problem": consider n closed disjoint 
balls B;,... , B n in C'. Is their union polynomially convex? For n = 1 or 2 
one sees at once that the answer is "Yes". For n = 4 the answer is unknown 
as of today. Kallin showed in [44] that the answer is "Yes" for n = 3. 

One other major line of research at MIT at that time was Hoffman's work 
on the algebra H° of bounded analytic functions on the unit disk. HP 
is a uniform algebra. Its maximal ideal space, 97(H°), is as mysterious 
a compact space as an analyst is likely to encounter. In his book Banach 
Spaces of Analytic Functions, which was published in 1962 by Prentice-Hall, 
Hoffman devoted Chapter 10 to H° as a Banach algebra. 

That book as a whole was a milestone. It showed to the world of classical 
analysts and to the world of functional analysts that they were brothers and 
sisters rather than strangers (as many had thought). One source of this recog­ 
nition was for Hoffman, as it was for myself and many others, the towering 
figure of Arne Beurling who in his own work had combined classical and 
abstract analysis in essentially new ways. 

One observation which Hoffman made was that H00 is almost, but not 
quite, a Dirichlet algebra on its Silov boundary S(H"). For a uniform algebra 
A on a space X write log[4'] for the space of all functions log]f] such that 
f and f7' both belong to 4. Hoffman called 4 logmodular if log\A7'] is 
uniformly dense in the real continuous functions on X. Dirichlet algebras 
are logmodular (trivially), but not conversely. Logmodular algebras still enjoy 
the property that representing measures for points in rot are unique. H° is 
a logmodular algebra on S(H°). In [35] Hoffman developed the theory of 
logmodular algebras and showed that they enjoyed almost all the pleasant 
properties of Dirichlet algebras. In particular, their Gleason parts were either 
points or analytic disks. This last result raised the question of describing the 
Gleason parts of H00 explicitly. In the paper [36] Hoffman solved this very 
difficult problem, making use of the deep work of Lennart Carleson in [21] 
and Donald Newman in [49]. · 
H00 as a Banach algebra and, in particular, as a subalgebra of L 00 on the 

circle has, since Hoffman's work, been the subject of intensive investigation. 
This theory is closely connected with the modern theory of bounded linear 
operators on a Hilbert space. An exposition of the work on H00 from a 
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function-theoretic point of view is found in John Garnett's book Bounded 
Analytic Functions, published by Academic Press in 1981. In particular, this 
book treats the Corona Problem, mentioned in Section 3 above, including 
the remarkable new solution of the problem by Tom Wolff. 

A further development in the abstract direction came in the work of Lumer 
in [46], where Lumer makes as his only hypothesis on a uniform algebra 
the uniqueness of the representing measures for the points of rot. Other 
extensions of this theory are given by P. Ahern and D. Sarason in [l] and by 
K. Barbey and H. Konig in [8]. 

8. YALE 
I taught at Yale from 19 51 to 19 54 and at Brown after that. Yale pro­ 

vided a superb environment for a young analyst. The senior people in anal­ 
ysis, Rickart, Kakutani, Dunford, and Hille were very active, friendly and 
encouraging, and the junior people, Jack Schwartz, Henry Helson, Bill Bade, 
Bob Bartle, Frank Quigley, and myself had a very lively time in the analysis 
seminar. We all taught calculus, Math 12, out of Ed Begle's book, which is 
based on the axioms of the real number system. The combination of axioms, 
Yalies, and ourselves made a heady brew. Our wives were sick of conversa­ 
tions about Math 12 which went on at all department parties. The normal 
teaching evaluation which each of us got from our freshmen was, "While 
undoubtedly a brilliant mathematician, Mr. X just can't get it across". 

Rickart early on saw the possibilities of an abstract function theory in his 
papers [53], [54], etc., and through the work of his students. Talking with 
him and with his student John Holladay got me to thinking about Function 
Algebras. One day in early 1953 Rickart showed to Kakutani and me a recent 
paper by the Russian mathematician Leibenson, [45], in which Leibenson 
raised the following question: Let r denote the unit circle [z] = 1 and let 
A denote the disk algebra, viewed as a subalgebra of C(r). Suppose ,p is a 
function in C(T) which is not in A. Is the closed algebra generated by ,p 
and A then all of C(T)? He showed that it was if o is real or if o satisfies a 
Lipschitz condition. 

Some months earlier I had heard about an intriguing recent result of Rudin: 
given an algebra of functions continuous in the closed disk [z] < 1. Suppose 
every F in the algebra attains the maximum of its modulus on the boundary 
[z]= 1. Then if one schlicht function belongs to the algebra, every F in the 
algebra is analytic in \z] < 1. 

I did not then know Rudin's proof and spent a week of hard work, making 
up a proof of Rudin's theorem. My proof was function-algebraic in spirit and 
rather more complicated than Rudin's own, in [60]. When I saw Leibenson's 
question, I realized that I could use similar function-algebraic arguments to 
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answer it. I showed that every closed subalgebra of C(T) which contains A 
either equals A or equals C(T). 

I now asked myself what other closed subalgebras of C(T) have this prop­ 
erty of being "maximal" in C(T). Let us consider a simple closed curve y 
on a Riemann surf ace which is a torus, such that y bounds a region £2 on 
this torus. Then the boundary functions on y of all functions analytic on 2 
and continuous on £2Uy make up such a maximal subalgebra of C(y). Also 
C(y) = C(r). Since £2 need not be of the type of the disk, we have a new 
maximal subalgebra of C(T). It was clear then that one should prove that if 
E is any finite Riemann surface with nice boundary y = O2, then the algebra 
A(E) of functions analytic on 2\O2 and continuous on 2 is a maximal sub­ 
algebra of C(y). With the kind help of Maurice Heins at Brown, I proved 
this for the case that 81: is a single contour in [70]. Hal Royden proved the 
general case in [57]. 

The algebra considered by Leibenson, generated by pg and A on r, evidently 
is generated by the two functions: o and z. Let now rp and y be any two 
functions continuous on I which together separate points on I, and denote 
by [, y] the closed subalgebra of C(T) which they generate. Of course, 
[ow] may equal C(T), e.g. if = Z, = z. Suppose that [,] is a 
proper subalgebra of C(T). Then we might expect that T lies embedded 
as the boundary curve 02 of some finite Riemann surface l: such that rp 
and y extend analytically from 02 to Z. In that case [, y] would contain 
only boundary functions of functions analytic on 2, and hence be a proper 
subalgebra of C(T). 

I badly wanted to prove that this is what happens. In the case that ,p and 
1/f are real-analytic on T and hence can be viewed as defined and analytic in a 
little annulus containing r, I finally did prove it by the end of 1956, in [71]. 

One can look at this question geometrically, by considering the image X 
of r in C? under the map (9,y). Then Xis a simple closed curve in C? and 
the hypothesis that [,p, rp] I- C(r) is equivalent to the statement that P(X) ± 
C(X). The desired conclusion, the existence of a finite Riemann surface in 
which T is embedded, then becomes the existence of a finite Riemann surf ace 
l: in e2 having X as its boundary. 

In this language, and replacing C? by en, the problem is then as follows. 
Given a simple closed curve X in C" with P(X) {± C(X). Show that there 
exists a finite Riemann surface Y in C" (possibly admitting singular points) 
which has X as its boundary. One expects that the finite Riemann surface 
l: equals i, the polynomially convex hull of X. All this turned out to be 
true, as long as the curve X has some regularity. I proved it when X is a 
single real-analytic curve, Stolzenberg did the case when X is the union of 
finitely many differentiable closed curves [67], and Herbert Alexander [2] did 
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the case when X is merely rectifiable. Bishop's ideas in (14] and (15] played 
an important role in this work. 

One application of this theory of function algebras on the circle came in 
the work of Royden in [59] on the maximum principle for bounded analytic 
functions on an open Riemann surf ace. 

Suppose now that we replace the circle I by the unit interval I and study 
the closed subalgebras of C(I) which are uniform algebras on I. The cor­ 
responding geometric problem in en is to identify the polynomially convex 
hull of a Jordan arc in C". When J is a regular Jordan arc, satisfying the 
same smoothness conditions we imposed on the closed curve X above, it 
turned out that J = J, i.e., J is polynomially convex. We expect this, since 
intuitively we feel that" J cannot bound anything". Furthermore, when J is 
a regular Jordan arc, P( J) = C( J), i.e., every continuous function on J is 
a uniform limit on J of polynomials in z1,...,2,. The proof uses both the 
fact that J is polynomially convex, and that J is smooth, and was given by 
H. Helson and J. Quigley, in greater generality, in [34]. 

However, when J is merely topologically a Jordan arc, i.e., homeomorphic 
to the interval I, J may fail to be polynomially convex. Examples of this were 
given by me for n= 3, (69], and by Rudin for n = 2, [61]. 

The Peak Point Conjecture and Cole's Thesis. As we saw in Section 5 above, 
Bishop had shown, for an arbitrary compact plane set X, that R(X) = C(X) 
whenever each point of Xis a peak point of R(X). The Peak Point Conjecture 
was the statement that if A is a uniform algebra on X and if every point of 
9t is a peak point of A (in which case, of course, 9 and X coincide), then 
A = C(X). A related conjecture, due to Gleason, was the statement that 
C(X) is characterized as a uniform algebra on X by the fact that each part 
of its maximal ideal space is a single point. 
During the 1960s many people tried to settle these conjectures without suc­ 

cess. In his remarkable thesis at Yale in 1968, Brian Cole (Rickart's student) 
disproved both of these conjectures. His procedure was to make repeated 
adjunction of square roots to a given uniform algebra A so as to end up with 
an algebra A which is such that every function in A has a square root in A. 
The proof given by Cole may be found in the appendix to A. Browder's book 
mentioned above in Section 1. Cole's thesis settled a series of other questions 
as well, and stimulated much further work. 

In particular, Richard Basener at Brown was able to modify Cole's con­ 
struction so as to obtain a compact set X lying on the sphere [z+]+\z±]= 1 
in C? such that R(X) provides another counterexample to the peak point con­ 
jecture. Here R(X) denotes the uniform closure on X of rational functions 
in z1,z4 which are analytic on X. 

Brian Cole joined the Brown department in 1969. 
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9. FUNCTION ALGEBRAS ON SMOOTH MANIFOLDS 
Let X be a compact set in C". Under what conditions on X does P(X) = 

C(X)? Since the maximal ideal space of C(X) is X and the maximal ideal 
space of P(X) is X, a necessary condition for this is that X be polynomially 
convex. 

Suppose now that X is a compact smooth manifold in en with or without 
boundary, and that Xis polynomially convex. Does it follow that P(X) = 
C(X)? As we saw in Section 8, the answer is "Yes" in the case that X is a 
circle or an arc. 

Let k denote the real dimension of X. For k > 2, it is clear that a new 
condition enters. If for instance Y is the 2-dimensional disk: z; = l, z;=A, 
Ill ~ 1 in e2, then Y = Y and P(Y) contains exclusively functions analytic 
on Y. To rule out such a situation, one may consider the tangent space T, 
to X for each point x in X. T, is a k-dimensional real subspace of C". If X 
is a complex-analytic manifold, as in the example, or if merely X contains 
a complex-analytic submanifold passing through x, this will show up by the 
presence of a complex-linear subspace of C" in T. 

We call such a subspace a complex tangent to X at x, and we call the 
manifold X totally real if it has no complex tangents. In 1968--1969 a break­ 
through occurred. It was shown, under various conditions of smoothness on 
X, and arbitrary k, that if 2 is a smooth totally real manifold in C" and X is 
a compact and polynomially convex subset of 2, then P(X) = C(X). 

The real subspace R" of C", consisting of all points (x1,...,x,,) with all x; 
real, is evidently a smooth totally real manifold, and every compact subset of 
Rn is polynomially convex. So one recovers the Weierstrass approximation 
theorem. 

The above theorem was proved in R. Nirenberg and R. 0. Wells, [50), L. 
Hormander and J. Wermer, [40], and E. M. Cirka, [24], and the method of 
proof in these papers was based on Hormander's solution of the 'a-problem. 
Much further work on this problem, with weakened smoothness conditions 
and simpler, more elementary proofs, was done later on by Weinstock, 
Berndtsson, Harvey and Wells, and others. 

I had earlier, in [73), proved the result for the case k = 2 when X is a 
2-dimensional smooth disk, and M. Freeman, in [26], had settled the case of 
general smooth 2-manifolds. The method used by myself and by Freeman 
depended on the use of the Cauchy transform of a plane measure, and did 
not generalize to the case k > 2. 
Bishop disks. Suppose that 2 is a smooth manifold which does have com­ 

plex tangents. What then? If the dimension k of r. > n, elementary linear 
algebra shows that Z has complex tangents at every point. In his paper Differ­ 
entiable Manifolds in Complex Euclidean Space in [17], Errett Bishop showed 
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the following: Assume k > n. Fix x in 2 and assume that the dimension of the 
largest complex-linear subspace of T, is k- n. Then if U is any neighborhood 
of x on 2, there exists an analytic disk in C" whose boundary lies in U. 

Suppose now that X is a compact set lying on Z which contains some open 
subset of l:. It follows that X contains a multitude of analytic disks whose 
boundaries lie in X. Every function in P(X) is then analytic on each of these 
disks. 

These "Bishop disks" have turned out to play an important role in the 
study of analytic continuation in several complex variables. 

10. HANOVER, N.H., PALO ALTO, NEW ORLEANS, YEREVAN 
Many of us got together in the summers at a succession of meetings devoted 

at least in part to Function Algebras. The atmosphere was rather relaxed 
some of the time. The conference at Dartmouth College in Hanover was 
held in 1960. It was organized by Terry Mirkil et al. and was supported by 
the NSF. One weekday during the meeting Matt Gaffney showed up from 
Washington, representing the NSF, to see how the conference was going. At 
the Dartmouth math department he found none of the mathematicians, only 
one of the wives, looking for her husband. The rest of us were out in the 
lovely countryside. I myself was with Karel de Leeuw and Siggi Helgason on 
a sailboat on a lake. There were no dire consequences. 

In 1961 there was a one-month conference in analysis at Stanford, under 
the auspices of the American Mathematical Society, and many of us were 
there and gave talks. 

A conference fully devoted to Function Algebras was held at Tulane Uni­ 
versity in April 1965, organized by Frank Birtel et al. Most people interested 
in the subject attended, and a volume of the proceedings was published, 
Function Algebras, edited by F. Birtel, Scott-Foresman and Co. ( 1966). 

In September, 1965 a number of us went to a big conference on analytic 
functions in the Soviet Union in Yerevan. We had a chance to meet and talk 
with many of the Russians who had similar interests, and I was very much 
struck by the warmth and friendliness of our hosts. The group around Shabat, 
Vitushkin, and Mergelyan was very active and doing fundamental work in 
approximation theory. It included E. Gorin, A. Gon&ar, E. M. Cirka, S. 
Melnikov, and E. P. Dolzhenko. 

In those days the Russians were not party to an international copyright 
agreement, so they could freely translate foreign books into Russian. When 
an author came to the Soviet Union, he got his royalty for the translation in 
rubles. In this way Hoffman and I got some rubles. They had translated an 
article of mine so I got enough for one bottle of Armenian cognac and one 
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fur hat. Hoffman's book had been translated, so he was amply supplied with 
rubles for cognac. 

Goncar threw a party for many of us at his family home in Yerevan. The 
party was very high-spirited with singing, piano-playing and a greater density 
of liquor bottles on the table than I have ever seen. Of course many toasts 
were drunk. My toast to Mergelyan was "on your beautiful work which has 
inspired us all". V. P. Havin responded, with a toast to Mergelyan: "Your 
work has inspired not only the Americans." 
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