Math 112 — Partial Differential Equations

Partial Differential Equations (PDEs for short) come up in most parts
of mathematics and in most sciences. For instance, complex analysis is the
study of the Cauchy-Riemann equations

Uy =Vy , Uy = —Vyp . (1)

Another example is the recent resolution of the celebrated Poincaré conjec-
ture in topology, which uses diffusion-type PDEs to analyze the singularities
of surfaces. Brownian motion is a random process that is described by a PDE.
Other examples of PDEs occur in the flow of fluids, diffusion of chemicals,
conduction of neural impulses along an axon, radiation of electromagnetic
waves, quantum mechanics, spread of heat, propagation of sound, spread of
epidemics, etc. PDE is a vast subject.

Math 112 is an introductory course in the subject. All you really have to
know is calculus and linear algebra. The key prerequisite is several-variable
calculus. However, it is not one of the easier 100-level courses, so it is recom-
mended (but not required) that you take at least one other 100-level course
before taking Math 112. Very good preparatory courses would be Math 101
(Introduction to Analysis), 126 (Complex Analysis), 113 (Real Analysis) or
111 (Ordinary Differential Equations). Math 111 is not a prerequisite.

A few PDEs are really easy to solve, such as

U + Uy = O, (2>

which has the general solution u(x,t) = f(x — t) for any function f of one
variable. But most of them are difficult or notoriously difficult or impos-
sible to solve. (It’s something like indefinite integrals, most of which, like
[ exp(2?) dx, do not have explicit solutions.)

In Math 112 we will study the most important equations that are in
the easy-to-difficult category. The notoriously difficult ones are subjects of
current mathematical research or computational experimentation. Most of
the ones studied in this course have explicit solutions in the form of fairly
complicated formulas involving integrals or infinite series. Just about all
PDEs have infinitely many solutions, often an infinite-dimensional space of
solutions, as in the very simple example above. After a while, one realizes
that one has to rethink what one means by “solving” a PDE. Many PDEs
have no solution formula at all. Instead, one has to find properties of the
solutions.



A PDE like u; + u, = 0 has order one because it involves only first
derivatives. The PDE uw; = u,, has order two because there is a second
derivative, etc. After a very short introduction to first-order PDEs, the
focus of the course rests on the three most fundamental PDEs of order two:

Upy + Uy = 0, U = Uy, and uy = Uyy. (3)

These are called the Laplace equation, the diffusion (or heat) equation and
the wave equation, respectively. There are also the higher-dimensional ver-
sions of them, namely:

AU = Ugy + Uyy + U, =0, w,=Au and uy = Au (4)

in three spatial dimensions. Each of these three basic equations has its
own “personality”. These equations are linear, and therefore the space of
solutions is a vector space! So the concepts of linear algebra come into play,
particularly the concepts of eigenvector and orthogonality.

There are an infinite number of solutions, so ... how do we pick out any
particular one? Here’s the standard way. For the diffusion or wave equations
we impose initial conditions, which specify the solution at ¢ = 0. In the
space variables, we take a domain D and specify boundary conditions on its
boundary.

For instance, for the diffusion equation u; = u,,, we could take the in-
terval 0 < x < 1 and look for a solution which vanishes at both endpoints
x = 0,1. With the initial condition u(x,0) = ¢(z), this problem (with these
extra conditions)

Up = Ugy , u(z,0)=0o(x), u(0,t)=u(l,t)=0 (5)

has a unique solution! It turns out to be given by the complicated formula

oo

u(z,t) = Z an e sin(nra). (6)

n=1

How in blazes to we get to this? Well, take the course and you’ll find out.
Put ¢t = 0 in the formula and we see that

Z ay, sin(nmx) (7)

n=1



where the coefficients a,, are given in terms of the initial function by

a, = 2/0 ¢(x) sin(nmz)dx. (8)

This formula (7) is a Fourier series. Fourier used it around 1820 to explain
heat conduction in a material. An important part of this course is devoted
to studying Fourier series. The central concepts are orthogonality of func-
tions, completeness of a collection of orthogonal functions, and especially
convergence of infinite series of functions. Actually, it turns out that the
convergence of Fourier series is somehow much better than the convergence
of Taylor series. It’s better because Fourier series converge for many more
functions ¢. A function has a Taylor series expansion only if it is analytic,
but even discontinuous functions have Fourier series expansions. We study
different types of convergence (pointwise, uniform, L?).

Later in the course, we study two and three dimensional problems, where
more interesting geometry comes into play. For instance, the three-dimensional
wave equation is the basic equation of the theory of relativity, where time can
perhaps be regarded as a fourth “space” variable. Directly from the PDE,
we can see how all waves travel at less than the speed of light.

Here are some other questions that may be considered in the course:

In three dimensions, what functions take the place of the sine function
(as in the example above)? A partial answer: the Bessel functions come into
play if the domain is a sphere.

How do we discretize solutions so that we can compute them numerically?
A warning: unless we discretize very carefully, we could get junk.

How do we solve the Schrodinger equation of quantum mechanics?
How do we solve the Maxwell equations of electromagnetism?

How do we handle other PDEs, especially nonlinear ones? Example: the
KdV equation u; 4+ 4., + uu, = 0 has a nonlinear term uu,. For nonlinear
PDEs, one finds new phenomena such as shock waves and solitons.



