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General Information: Math 114 is a course in real analysis. It is the
second half of the undergraduate series in real analysis, M113-4. In M113,
you examine concepts such as limits, continuity, and integration in a much
more general setting. In M114, you examine concepts such as partial deriva-
tives, line integrals (and their generalizations) and Stokes’ theorem in a more
general setting. The main topics in M114 are

• Partial derivatives, especially the Inverse Function Theorem and the
Implicit Function Theorem.

• Basic information about manifolds and calculus on manifolds, with
special emphasis on differential forms.

• The general version of Stokes’ theorem.

I’ll discuss these items in turn.

Partial Derivatives: In M114, you take a much more natural and gen-
eral approach to partial derivatives than is taken in a typical calculus course
like M18. Let F : R

n → R
m be a map whose partial derivatives exist and

vary continuously. For each point p in the domain of F , there is a linear map
dFp : R

n → R
m such that

‖F (p + ǫv) − F (p) + ǫ dFp(v)‖ < O(ǫ2),

for ǫ sufficiently small. That is, in a neighborhood of p, the map F looks like
the linear map dF to second order. The map dF is just the matrix of first
partial derivatives of F . In M114 you will give a rigorous proof of this result.
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If F : R
n → R

m and G : R
m → R

p are two maps, we have the composi-
tion H = G ◦F , defined as H(p) = G(F (p)). In M114 you prove the general
form of the Chain Rule:

dHp = dGF (p).dFp.

Here the ”dot” means the matrix product. This equation is supposed to
hold for all p ∈ R

n. For convenience, I have stated things for maps that are
defined on all Euclidean space, but the same result holds for maps that are
just defined on open subsets of Euclidean space.

The Inverse Function Theorem: Let U and V be two open sets in R
n.

A map F : U → V is called a diffeomorphism if

• F is a bijection.

• F is smooth. All partial derivatives of all orders exist.

• F−1 is smooth.

• dFp is a linear isomorphism for all p ∈ U .

The Inverse Function Theorem gives a criterion for F to be a (local) diffeo-
morphism.

Theorem 0.1 Suppose F : U → R
n is defined and smooth in a neighborhood

U of 0. Suppose also that dF0 is nonsingular. Then there is a neighborhood

U ′ ⊂ U such that F : U ′ → V ′ is a diffeomorphism. Here 0 ∈ U ′ and

V ′ = F (U ′).

So, to check that F is a diffeomorphism in a neighborhood of 0 one just
needs to compute the matrix of partials at 0. Of course, a similar result can
be formulated with 0 replaced by any point p ∈ R

n. In M114 you see the
proof of the Inverse Function Theorem. The Inverse Function Theorem is of
crucial importance when it comes time to study manifolds.

The Implicit Function Theorem: The Implicit Function Theorem is a
variant of the Inverse Function Theorem. Let m < n and let k = n−m. We
write R

n = R
k × R

m. Given a smooth map g : R
k → R

m, we can form the
graph

Γg = {(x, g(x))| x ∈ R
k}.

More generally, if g is just defined in an open subset U ⊂ R
k, then Γu is

contained in the subset U × R
m ⊂ R

n.
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Theorem 0.2 Suppose U is a neighborhood of 0 in R
n and F : U → R

m

is a smooth map. Suppose that F (0) = 0 and dF0 is a linear isomorphism

when restricted to {0}×R
m. Then there is a smooth map g : R

k → R
m and

a neighborhood U ′ of 0 in R
n such that

F−1(0) ∩ U ′ = Γg ∩ U ′.

That is, F vanishes exactly on the graph of g.

Special cases of the Implicit Function Theorem are familiar from calculus.
For instance, suppose that F : R

3 → R is a map such that the gradient
∇F (0) is nonzero and F (0) = 0. Then, in a neighborhood of 0, the set F−1(0)
is a surface. To see how this follows from the Implicit Function Theorem, we
take k = 2 and m = 1 and n = 3. We rotate so that dF/dz 6= 0. Then dF
restricted to {0} × R

1 is just dF/dz. This is nonzingular. But, in this case,
Γg is just the ordinary graph of g. So, in a neighborhood of 0 ∈ R

3, the map
F vanishes on the graph of a smooth function – i.e.a surface.

We stated the Implicit Function Theorem in a particular way, for the sake
of convenience. A more natural way is that F vanishes along a k-dimensional
surface in a neighborhood of 0 provided that F (0) = 0 and dF0 is onto. When
dF0 is onto, we can rotate R

n in such a way that dF0 is an isomorphism when
restricted to {0} × R

m.

Embedded Submanifolds: Let S ⊂ R
n be a set. We say that S is a

k-dimensional submanifold if, for every point p ∈ S, there is a neighborhood
U of p and a smooth map F : U → R

m such dFp is onto. Here k + m = n,
as above. By the Implicit Function Theorem, S is a suitably rotated graph
Γg of a smooth map g : R

k → R
m. The map F depends on the point p, but

the same map may be used for all points of S sufficiently close to p. In other
words S looks locally like a (slightly distorted) copy of R

k.
The concept of an embedded submanifold is also familiar from calculus.

As a special case, suppose we have a smooth map F : R
3 → R such that

∇Fp is nonzero for all p such that F (p) = 0. Then the level set F−1(0) is
a smooth surface. Curves in the plane furnish another example, though in
this case it is easier just to say that a curve is the image of a smooth map
F : R → R

2 such that F ′ is never 0.
In M18 you learn about line integrals over curves and also about surface

integrals. Though it is not often mentioned in a calculus class, the integrand
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of a line integral – meaning the thing you integrate – is a 1-form. The inte-
grand of a surface integral is a 2-form. These concepts extend naturally to
the concept of a k-form, which you can integrate over a k-dimensional sub-
manifold. In M114, you develop the theory of k-forms. Part of this theory is
algebraic and part is analysis-based. I’ll explain the algebraic part first and
then the analysis-based part.

Exterior Algebra: A k-tensor on R
n is a map

T : R
n × ... × R

n → R

which is linear in each of the k positions. For instance

T (v1 + rv′

1, v2, ..., vk) = T (v1, ..., vk) + rT (v′

1, v2, ..., vk),

and similiarly for the other positions. T is called alternating if

T (..., vi, ..., vj, ...) = −T (..., vj , ..., vi, ...).

That is, switching two of the vectors puts a minus sign in front of the value
of T . The most familiar object like this is the determinant, which one can
think of as an alternating n-tensor on R

n.
The space of all alternating k-tensors on R

n is denoted by Λk
R

n. This
space is known as the k-th exterior power of R

n. The space Λk
R

n is naturally
a vector space of dimension n choose k. Here is the beauty of elements in
Λk

R
n. Suppose that Π ⊂ R

n is an oriented k-plane and ω ∈ Λk
R

n. Then
we can choose a basis for Π, compatible with the orientation, that spans a
parallelopiped of unit volume. Let {vj} be this basis. We define

ω(Π) = ω(v1, ..., vk).

At first it looks like this depends on the basis. However, if we pick a different
basis {v′

j} with all the same properties then it turns out that

ω(v1, ..., vk) = ω(v′

1, ..., v
′

k).

In other words, ω assigns a well defined number to each oriented k-plane.

The Wedge Product: It turns out that there is a natural map, denoted
by ∧, from Λk

R
n ×Λm

R
n to Λk+m

R
n. In other words, we can take an alter-

nating k form and an alternating m form and produce an alternating k + m
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form. The operation is traditionally known as the wedge product . Here is
the formula for this operation.

ω1 ∧ ω2(v1, ..., vk, w1, ..., wm) =

1

(k + m)!

∑
σ

sign(σ) ω1(σ(v1), ..., σ(vk)) × ω2(σ(w1), ..., σ(wm)).

Here × is just multiplication. The sum takes place over all permutations
of (k + m) elements. The sign of the permutation σ is 1 if σ is an even
permutation and −1 if σ is an odd permutation.

This formula can be extended to k-tuples of forms giving (in the case
k = 3) expressions like ω1 ∧ ω2 ∧ ω3. In particular, if ω1, ..., ωk are all 1-
tensors (i..e. linear functionals) on R

n, then ω1 ∧ ... ∧ ωk ∈ Λk
R

n. These
particular elements form a basis for Λk

R
n. Any ω ∈ Λk

R
n has a unique

decomposition

ω =
∑
I

cIωI ; I = (i1, ..., ik); ωI = dxi1 ∧ ... ∧ dxik .

Here dxi is the linear functional that is 1 on the standard basis vector ei and
0 on all other basis vectors ej . The sum takes place over all multi-indices
with 1 ≤ i1 < i2 < ..., < ik ≤ n.

Differential Forms: A differential k-form on R
n is a smooth choice of

an element ω(p) ∈ Λk
R

n for each p ∈ R
n. By smooth we mean that, if we

write ω(p) in terms of a basis of Λk
R

n at each point, then the coefficients
are smooth functions on R

n in the ordinary sense. You have probably seen a
related concept: A vector field on R

n is smooth if the component functions
are smooth. The idea here is similar.

Here we will give an informal idea how to integrate a smooth k-form ω
over a smooth k-dimensional submanifold Ω. The way we explain it is not
really how it is done in M114, but it does give some intuition for what is
going on.

First we subdivide Ω into a large number of small k-dimensional tetra-
hedra. These tetrahedra are drawn on Ω, so to speak, and consequently not
quite flat. However, we replace each tetrahedron by a flat tetrahedron that
has the same vertices. We now have a new “faceted surface” consisting of
a bunch of small tetrahedra. This faceted surface is a close approximation
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to Ω. Suppose that T1, ..., Tm is our list of tetrahedra. Let Π1, ..., Πm be the
k-planes that contain these tetrahedra. We define

I =
m∑

j=1

ω(Πj)volume(Tj).

The value of I depends on the choice of tetrahedra, much in the same way
that a Riemann sum depends on the choice of partition. However, as we let
the mesh size of the tetrahedra tend to 0, we get a well defined limit

∫
Ω

ω.

Again, the procedure we just described is not the actual one taken in
M114. In M114 the integral is defined carefully, in terms that have more to
do with the change of variables formula from multivariable calculus. Ω.

The d Operator: Let Xk,n denote the space of differential k-forms on R
n.

There is a natural map d : Xk,n → Xk+1,n. We define

d(fdxi1 ∧ ... ∧ dxik) =
n∑

j=1

df

dxj

dxj ∧ dxi1 ∧ ... ∧ dxik .

Any differential k-form is a sum of these, and so we can extend d linearly to
all of Xk,n.

Some special cases are well-known in physics.

• The map X0,3 → X1,3 can be interpreted as the gradient.

• The map X1,3 → X2,3 can be interpreted as the curl.

• The map X2,3 → X3,3 can be interpreted as the divergence.

In order to make these interpretations, one has to identify X1,3 and X2,3 with
the space of smooth vector fields on R

3. This is possible to do.
d satisfies the famous equation

d ◦ d = 0.

In the classical cases above, this equation corresponds to various physical
statements such as “the divergence of the curl is zero.”
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Stokes’ Theorem: Now for the highlight of M114. Stokes’ theorem deals
with the situation where Ω is a k-dimensional submanifold in R

n and the
boundary ∂Ω is a (k−1) dimensional submanifold. You should picture some-
thing like a potato chip in space for the case n = 3 and k = 2. If ω is a
differential (k − 1) form then dω is a differential k form. It makes sense to
integrate ω over ∂Ω and it also makes sense to integrate dω over Ω. Stokes’
Theorem says ∫

Ω
dω =

∫
∂Ω

ω.

All the classical versions of Stokes’ theorem fit into this one general state-
ment. When n = 2 and k = 2 this is Green’s Theorem. When n = 3 and
k = 2 this is the classical Stokes’ theorem. When n = 3 and k = 3 this is the
divergence theorem.

A Final Word: It might look like Stokes’ theorem is the culminating result
in a long of line of mathematics, but it is actually just the starting point
for the theory of de Rham cohomology on smooth manifolds. You can learn
about this in a graduate course in differential topology.
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