
THE WEIL- ÉTALE TOPOLOGY

S.Lichtenbaum

§0. Introduction

In this paper we introduce a new, or at least neglected, Grothendieck topology on the

category of schemes of finite type over a finite field. This topology, which we call the Weil-

étale topology, bears the same relation to the étale topology as the Weil group bears to the

Galois group.

Recall that if K is the function field of a curve over a finite field k, K̄ is a fixed algebraic

closure of K, and GK is the Galois group of K̄ over K, GK comes with a natural surjection

ô to Gal(Kk̄/K), which is isomorphic to Ẑ and topologically generated by the Frobenius

element û. The Weil group WK is just ôÄ1(Z) where Z is the subgroup of Gal(Kk̄/K)

consisting of all integral powers of û. (Of course, this works equally well if ”curve” is

replaced by ”algebraic variety” but classically only curves were considered).

The Weil-étale topology should have several advantages over the étale topology. Con-

jecturally, all the motivic cohomology groups in this topology should be finitely generated,

whereas in the étale topology these groups can be quite complicated. Also, the Weil-étale co-

homology groups should contain more information, in the sense that they should determine

the étale cohomology groups, but not vice versa.

Finally, there should be a natural notion of Euler characteristic for these groups, which is

closely related to special values of zeta-functions. In short, it is our hope that the Weil-étale
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motivic cohomology groups of algebraic varieties over finite fields should be better suited

than the étale groups to any possible arithmetic application.

In the body of this paper we first prove a global duality theorem for cohomology of

Weil-étale sheaves on curves over finite fields, starting from a similar theorem in the étale

case, which is essentially a version of global class field theory. Our duality theorem is a

Verdier-type duality and is properly stated (Theorem 6.5) in terms of the derived category

of abelian groups.

We then go on to state a conjecture (Conjecture 8.1) relating the behavior of zeta-

functions of algebraic varieties V over finite fields at the point s = 0 to Weil-étale Euler

characteristics and prove this conjecture for curves, smooth surfaces, and arbitrary projective

smooth varieties. In the case when V is projective and smooth this is a variant of Theorem

0.4a of [M2], but if V is not projective, we do not know even a conjectural statement in

terms of étale cohomology.

§1. The cohomology of Z-modules and Ẑ-modules

We begin with a warning to the reader; the phrase ”Z-module” does not denote an abelian

group but instead a module over the group ring Z[Z]. Similarly, a ”Ẑ-module” is a module

over Z[Ẑ].

Lemma 1.1. Let M be a torsion Ẑ-module. The natural map from Hi(Ẑ,M) to Hi(Z,M)

is an isomorphism.

Proof. Both are zero for i ï 2 and it is clear for i = 0. So we may assume i = 1. Let õ

be a generator of Z. H1(Z, M) may be identified with M/(õ Ä 1)M , while H1(Ẑ,M) may

be identified with LimÄÄ!(Mõn

(n)/(õ Ä 1)Mõn

), where M(n) is the kernel of multiplication by

Nn = 1 + õ · · ·+ õnÄ1 on M . Since M is torsion, it is easy to see that M =
S

n Mõn

(n). (Let

x be in M . Since Ẑ acts continuously on M , there exists an r such that õrx = x and there

exists an m such that mx = 0. Then Nmr(x) = 0).

Lemma 1.2. Let M be any Ẑ-module. Then there are functorial isomorphisms:
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a) H0(Ẑ,M) ò= H0(Z, M).

b) H1(Ẑ,M) ò= H1(Z,M)tor

c) H2(Ẑ,M) ò= H1(Z,M)äZ Q/Z

Proof. a) is clear.

To prove b) and c), look at the commutative diagram

H1(Z,M) nÄÄÄÄ! H1(Z, M) ÄÄÄÄ! H1(Z,M/nM) ÄÄÄÄ! 0
x??

x??
x??ã

x??

H1(Ẑ,M) nÄÄÄÄ! H1(Ẑ,M) ÄÄÄÄ! H1(Ẑ,M/nM) ÄÄÄÄ! H2(Ẑ,M)n ÄÄÄÄ! 0

where ã is is an isomorphism by the preceding lemma.

It follows from diagram-chasing that there is a natural isomorphism

H2(Ẑ,M)n
ò! (H1(Z,M)ä (Z/nZ))/(H1(Z̃,M)ä Z/nZ)

and hence in the limit an isomorphism

H2(Ẑ, M) ò! H1(Z,M)äQ/Z

since H2(Ẑ,M) is torsion and H1(Ẑ,M)äQ/Z = 0.

Since H0(Z,M) ò! H0(Ẑ,M) and H0(Z,M/nM) ò! H0(Ẑ,M/nM), it is immediate that

H1(Z, M)n
ò! H1(Ẑ,M)n from which b) follows.

§2. Definition of the Weil -étale topology

Let k be a finite field and k̄ a fixed algebraic closure of k. Let X be a scheme of finite type

over k and let X̄ = X Çk k̄. We define the Weil-étale topology W = WX on X by letting

Cat(W) be the category defined as follows: the objects of Cat(W) are schemes étale and of

finite type over X̄. Let ô1 be the projection from X̄ to X, and let ô2 be the projection from

X̄ to k̄. If (W, f : W ! X̄) and (Z, g : Z ! X̄) are objects in Cat(W) with W connected,

a morphism û from (W,f) to (Z, g) is an X - morphism û from W to Z such that ô2 é f =
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ô2 é g é û up to an integral power of Frobenius on k̄. A morphism from an arbitrary W is

a collection of morphisms on the connected components of W . The coverings are the usual

étale coverings.

We recall that the Galois group of k̄ over k is naturally isomorphic to Ẑ, and we let Z be

the subgroup of Ẑ consisting of the integral powers of Frobenius. If G is a Weil-étale sheaf

on X then G(X̄) is in a natural way a Z-module. We define H0
W(X,G) to be G(X̄)Z, and

Hi
W(X,G) to be the derived functors of H0.

Note that there is no final object in our category, so our functors Hi are not cohomology

in the usual sense. The topology could be enlarged so that the Hi do become cohomology,

but at the cost of some additional complications and no obviously apparent advantage.

The category of lisse sheaves for this topology is equivalent to the category of ”Weil

sheaves” introduced by Deligne in [Del]. but Deligne did not actually define a topology, nor

consider sheaves of the type we work with here.

Definition 2.1. Let G be a group of automorphisms of a scheme X. We say that G acts

on a sheaf F on X if we have a compatible system of maps †õ : F ! õÉF for all õ in G.

Proposition 2.2. The category of Weil-étale sheaves on X is equivalent to the category of

étale sheaves F on X̄ equipped with a ZÄ action.

Proof. A Weil-étale sheaf on X certainly determines an étale sheaf on X̄. if U is an étale

scheme over X̄,and õ is in Z, let Uõ = U ÇX̄ X̄, where the map from X̄ to X̄ is given by

õ. Then the projection map from Uõ to U is a map in our category, and so determines a

functorial map F (U) to F (Uõ), which is exactly a map from F to õÉF .

To go in the other direction, a map in our category from V to W gives rise to a commu-

tative diagram

V ÄÄÄÄ! W
x??

x??

X̄
õÄÄÄÄ! X̄
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where õ is in Z. This clearly determines an X̄-map from V to Wõ, and thus a map from

F (W ) to F (V ).

Proposition 2.3. let G be a Weil-étale sheaf on X. There is a spectral sequence whose

Ep,q
2 -term is Hp(Z,Hq

ét(X̄,G)) and which converges to Hp+q
W (X,G).

Proof. The category of sheaves for the Weil-étale site on k is equivalent to the category

of Z-modules and the cohomology groups Hi
WD(k, G) are canonically isomorphic to the

cohomology groups Hi(Z, G(k̄)). The functor (ô2)É has the exact left adjoint ôÉ2 , and so

takes injectives to injectives. Our spectral sequence now just becomes a usual composite

functor spectral sequence.

We define a pair of functors: †, which maps Weil-étale sheaves on X to étale sheaves

on X, and û, which maps étale sheaves on X to Weil-étale sheaves on X. We define † as

follows: If G is a Weil-étale sheaf, define †(G)(U) to be (G(U ÇX X̄))Z. If F is an étale

sheaf on X define û(F ) to be ôÉ1(F ) (which is endowed with a natural Z-action).

It is readily verified that these functors have the following properties:

Proposition 2.3.

(a) û is left adjoint to †.

(b) † û = 1

(c) † is left exact and û is exact, so † takes injectives to injectives.

(d) †(Z) = Z, and †(Z/nZ) = Z/nZ

(e) There is a functorial map ci : Hi
ét(X,†(G)) ! Hi

W(X,G) which is an isomorphism

when i = 0, and, by 2), a functorial map Hi
ét(X,F ) ! Hi

W(X,û(F )).

(f) There is a functorial map of spectral sequences from

Hp(Ẑ,Hq
ét(X̄, F )) ) Hp+q

ét (X,†(F ))

to

Hp(Z,Hq
ét(X̄, F )) ) Hp+q

W (X,F )
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,

(g) ci is an isomorphism if G is torsion.

Note that in Proposition 2.2(f),the first spectral sequence is the standard Hochschild-

Serre spectral sequence and the second is the one from Proposition 2.1. Proposition 2.2(g)

then follows from a comparison of these spectral sequences, using Lemma 1.1.

§3. The finite generation of cohomology groups

Throughout this section let k be a fixed finite field.

Lemma 3.1. Let U be a curve over the finite field k. Let j : U ! X embed U as a dense

open subset of a projective curve X. Then the groups Hi
W(X, j!Z) are a) independent of j

and b) finitely generated.

Proof. a) Let j : U ! X and j0 : U ! X 0 be two completions of U . Replacing X 0 by the

closure of the image of U in X ÇX 0 we may assume that there is a map ô : X 0 ! X such

that ô é j0 = j. Since ô is finite, so is ô̄, and ô̄É is exact in the ètale topology. It follows that

the natural map from Hp
ét(X̄, ô̄ÉF ) to Hp

ét(X̄
0, F̄ ) is an isomorphism, and hence by the basic

spectral sequence of Proposition 2.1 ,the natural map from Hp
W(X,ôÉF ) to Hp

W(X 0, F ) is

an isomorphism. But ôÉj!Z is naturally isomorphic to j0!Z, and so the cohomology groups

Hp
W(X 0, j0!Z) are isomorphic to the groups Hp

W(X, j!Z)

b) Let U be an open dense subscheme of V which in turn is an open dense subscheme of

the projective curve X. Let û : U ! X and j : V ! X be the given open immersions, and

i the closed immersion of V Ä U in X. We have the exact sequence

0 ! û!Z ! j!Z ! iÉZ ! 0

.

Then part b) follows from the consideration of the related long exact cohomology se-

quence, showing that first the cohomology groups of smooth projective curves, then smooth

curves, and then arbitrary curves are finitely generated.
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Theorem 3.2. Let X be a projective smooth variety over k. The Weil-étale cohomology

groups Hq
W(X, Z) are finitely generated for all q, finite for q ï 2 and zero for q large.

Proof. a)We may assume X connected. Let X̄ be X Çk k̄. It follows from [M2] that

Hq
ét(X, Z) is finite for q ï 3 and zero for q large and q = 1, that H2

ét(X, Z) is the Q/Z-dual

of a finitely generated group of rank one, and of course H0
ét(X, Z) = Z. A comparison of the

spectral sequences given at the end of the preceding section then shows that Hq
W(X, Z) is

canonically isomorphic to Hq
ét(X, Z) (and hence finite and zero for q large) for q ï 3, that

H2
W(X, Z) is isomorphic to H2

ét(X, Z)/(Q/Z) and hence finite. It also follows immediately

that H0
W(X, Z) and H1

W(X, Z) are both isomorphic to Z.

Theorem 3.3. Let d î 2 and et U be a smooth d-dimensional quasi-projective variety over

k. By resolution of singularities we can find a smooth projective variety X containing U as

an open dense subvariety. Let j : U ! X be the corresponding open immersion. Then the

cohomology groups Hq
W(X, j!Z) are finitely generated, zero for q large and independent of

the choices of X and j.

Proof. We write Hq for Hq
W . We first show finite generation. Let j : U ! X as above,and

let Z = X Ä U . Let i : Z ! X be the corresponding closed immersion. We have the exact

sequence of sheaves on X: 0 ! j!Z ! Z ! iÉZ ! 0. Since iÉ is exact, Lemma 3.1 implies

that the cohomology groups Hq(X, iÉZ) ò! Hq(W, Z) are finitely generated and zero for

q large and Theorem 3.2 implies the cohomology groups Hq(X, Z) are finitely generated

and zero for q large. Hence the long exact cohomology sequence implies that the groups

Hq(X, j!Z) are also finitely generated and zero for q large.

Now we show independence. Suppose we have j : U ! X and j0 : U ! W with X and

W being smooth projective. Let ö : U ! V = X ÇW be the map induced by j and j0,

and let Z be the closure of U in V . By resolution we can find a ô : Z 0 ! Z such that Z 0 is

projective and smooth. Replacing W by Z 0, we may asume that there is a map ô : W ! X

such that ô é j0 = j. We next observe that ôÉj0!Z = j!Z, and then the functorial map from

Hq(X,ôÉF ) to Hq(W,F ) gives us the following commutative diagram:
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0 ÄÄÄÄ! Hq(X, j!Z)/n ÄÄÄÄ! Hq(X, j!(Z/n)) ÄÄÄÄ! (Hq+1(X, j!Z))n ÄÄÄÄ! 0

ãq

??y åq

??y çq+1

??y

0 ÄÄÄÄ! Hq(W, j0!Z)/n ÄÄÄÄ! Hq(W, j0!(Z/n)) ÄÄÄÄ! (Hq+1(W.j0!Z))n ÄÄÄÄ! 0

We know that å is an isomorphism because the standard étale cohomology groups with

compact support of constructible sheaves are well-defined. We proceed by descending in-

duction. Let éq : Hq(X, j!Z) ! Hq(W, j0!Z). If éq+1 is an isomorphism then çq+1 is an

isomorphism, hence ãq is an isomorphism. Now if we have a map f from one finitely gen-

erated group to another such that f becomes an isomorphism after tensoring with Z/n for

every n then it is easy to see that f must be an isomorphism. So éq is an isomorphism. We

can start the induction because both Hq’s are zero for large q.

Proposition 3.4. Let X be a geometrically connected smooth curve over a finite field k.

Then the cohomology groups Hq
W(X,Gm) are finitely generated for all q and zero if q ï 3.

If X is projective, H0
W(X, Gm) = kÉ and H1

W(X,Gm) = Pic(X) just as in the étale case,

H2
W(X,Gm) = Z, and the rest are zero.

.

Proof. We begin with the spectral sequence of Proposition 2.1:

Hp(Z, Hq
ét(X̄, Gm)) ) Hp+q

W (X,Gm)

This spectral sequence degenerates to give the series of short exact sequences

0 ! H1(Z,HqÄ1
ét (X̄,Gm) ! Hq

W(X, Gm) ! H0(Z, Hq
ét(X̄,Gm) ! 0

. We now plug in the fact [M1, Example 2.22d] that Hq
ét(X̄,Gm) = 0 for q ï 2. We

immediately obtain Hq
W(X,Gm) = 0 for q ï 3.

We also see H2
W(X,Gm) is isomorphic to H1(Z, P ic(X̄)). Let U(X̄) = H0(X̄,Gm). We

have an exact sequence

0 ! H1(Z, U(X̄)) ! H1
W(X,Gm) ! (Pic(X̄))Z ! 0
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Now write X as Y ÄS with Y smooth and projective and S finite. let T be the finite set of

ppoints of Ȳ lying over S. First assume that S is empty. Then (Pic(Ȳ ))Z ò! Pic(Y ) since

H2(Z, k̄É) = 0 Since H1(Z, P ic0(Ȳ ) = 0) by Lang’s theorem, H1(Z, P ic(Ȳ ) ò! H1(Z, Z) ò!

Z. The statement about H0 is clear.

Now let X be arbitrary. We have U(Ȳ ) = k̄É and the exact sequences:

0 ! U(Ȳ ) ! U(Ȳ Ä T ) ! M ! 0

0 ! N ! Pic(Ȳ ) ! Pic(Ȳ Ä T ) ! 0

where M and N are Z-modules which are finitely generated as abelian groups and so whose

Z-cohomology is also finitely generated. Since Hq(Z, k̄É) and Hq(Z, P ic(Ȳ )) are both finitely

generated for all q the result follows.

§4. Verdier duality for abelian groups.

In this section we state the surely well-known derived category version of duality in the

category of abelian groups. Let D be the full subcategory of the bounded derived category

Db(Z) of abelian groups consisting of those complexes with finitely-generated homology

groups. If A is in D, let AÉ be RHom(A, Z). Since Z has finite injective dimension, AÉ is

again in D.

We recall Theorem 10.8.7 of [Weib]: If R is a commutative ring and B is a bounded

above complex of R-modules, then äL
RB : DÄ(R) ! DÄ(R) is left adjoint to the functor

RHomR(B,Ä) : D+(R) ! D+(R). That is, for A in DÄ(R) and C in D+(R) there is a

natural isomorphism:

HomD(R)(A, RHomR(B,C)) ò! HomD(R)(AäL
R B,C)

Now let R = Z, B = AÉ,and C = Z. By applying Weibel’s Theorem 10.8.7 twice, we

obtain
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HomD(A,RHom(AÉ, Z) ò! HomD(A ä AÉ, Z) ò! HomD(AÉ ä A, Z) ò! HomD(AÉ, AÉ).

so there is a canonical map ã in the derived category from A to AÉÉ, corresponding to the

identity in HomD(AÉ, AÉ).

Proposition 4.1. The map ã is an isomorphism from D to D.

Proof. The proof is by an easy induction on the length n of the complex A. If n = 1 it

follows immediately, because if F is free and finitely generated Hom(F, Z) is dualizing, and

if M is finite, Ext1(M, Z) ò! Hom(M, Q/Z) is dualizing.

§.5 R-categories

Throughout this section, let R be a commutative ring of finite global dimension, so

every R-module has a finite projective and a finite injective resolution. If B is any additive

category, let K(B) be the category of complexes of objects of B, up to homotopy. We are

primarily interested in the case when R = Z. Let D(Z) be the derived category of the

category of abelian groups.

We begin with some lemmas about the category of R-modules. We refer to [Weib] for

basic definitions and results.

Lemma 5.1. Let P • = · · · ! PiÄ1 ! Pi ! Pi+1 . . . be an acyclic complex of projective

(resp. injective) R-modules (not necessarily satisfying any boundedness conditions). Then

P • is homotopic to zero.

Proof. We do only the projective case. Let di be the map from Pi to Pi+1, and let

Mi be the image of Pi. We have the exact sequence É : 0 ! Mi ! P1+1 ! Mi+1 ! 0.

This implies that pd(Mi) î max(pd(Mi+1)Ä 1, 0), and hence by induction and finite global

dimension that pd(Mi) = 0, so Mi is projective for all i. This implies that É splits and so

P • is homotopic to zero.

Lemma 5.2. Let B be an abelian category with enough projectives (resp. injectives) and

closed under arbitrary direct sums (resp. products). Then given any chain complex A•
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in B there exists a chain complex P • of projectives (resp. I• of injectives) and a quasi-

isomorphism f : P • ! A• (resp.A• ! I•).

Proof. Take a Cartan-Eilenberg resolution of A• and then apply the associated single

complex functor, using sums or products as the case may be. (See [Weib], Exercise 5.7.1

and Lemma 5.7.2).

Lemma 5.3. (Compare to [H], Proposition 4.7)) let A be the category of R-modules. Let

I (resp.P) be the (additive) subcategory of injective (resp. projective) R-modules. Then the

natural functors

ã : K(I) ! D(R)

å : K(P) ! D(R)

are equivalences of categories. In particular, two complexes of projective (resp. injective)

R-modules are homotopic if and only if they are quasi-isomorphic (equal in the derived

category).

Proof. We give the argument only for injectives. Let Qis be the multiplicative system of

quasi-isomorphisms in the category of complexes of R-modules. We note that K(I)\Qis is

a multiplicative system in K(I), by [H], Prop. 4.2], and we observe that lemma 5.2 implies

that condition (ii) of [H], prop. 3.3] is satisfied for K(I) ö K(A) and Qis. Hence the natural

functor

D(I) ! D(R)

is fully faithful. On the other hand, Lemma 5.1 shows that every quasi-isomorphism in

K(I) is an isomorphism, hence K(I) is naturally isomorphic to D(I). Now Lemma 5.2

shows that every object of D(R) is isomorphic to an object coming from K(I) so ã is an

equivalence of categories.

We recall the definition of K-projective and K-injective complexes of R-modules from

[S]:
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Definition 5.4. Let P • (resp. I•) be a complex of projective (resp. injective) R-modules.

P • is K-projective (resp. I• is K-injective) if for every acyclic complex A• of R-modules,

the complex Hom•(P •, A•) (resp. Hom•(A•, I•)), is also acyclic.

A K-projective resolution (resp. K-injective resolution) of a complex A• of R-modules

is a quasi-isomorphism f : P • ! A• (resp, g : A• ! I•), with P • (resp, I•) K-projective

(resp. K-injective).

In [S] Spaltenstein shows that K-projective and K-injective resolutions of arbitrary com-

plexes of R-modules always exist for any ring R, and are unique up to homotopy, so serve

in the usual way to define RHom.

Proposition 5.5. Let R be a commutative ring of finite global dimension. Then any com-

plex of projective (resp. injective) R-modules is K-projective (resp. K-injective).

Proof. Let P • be a complex of projective R-modules. Let f : Q• ! P • be a K-projective

resolution of P •. Since f is a quasi-isomorphism the cone C(f) is an acyclic complex of

projective R-modules, hence homotopically trivial, by Lemma 5.1. Any homotopically trivial

complex of projective modules is obviously K-projective, and hence P • is K-projective,

because it is part of a distinguished triangle where the other two vertices are K-projective.

The proof for injectives is identical.

Definition 5.6. Let A• and B• be complexes of R-modules. We define RHom(A•, B•) as

follows: Let ô : P • ! A• be a projective resolution of A•. Let i : B• ! I• be an injective

resolution of B•. Let RHom(A•, B•) be either Hom•(P •, B•) or Hom•(A•, I•)

By Proposition 5.5 we know that these two definitions are naturally equivalent and depend

only on the classes of A• and B• in the derived category D(R). Of course this yields the

usual definition under the usual boundedness hypotheses and Spaltenstein’s definition in

general.

Definition 5.7. An RÄ category C is a collection of objects Ob(C) such that for all A and

B in Ob(C) we have an object RHom(A,B) in D(Z) such that
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1: for all triples of objects A,B, C in Ob(C)there exists maps öA,B,C in D(Z) mapping

RHom(A,B)äL RHom(B,C) to RHom(A, C) satisfying the associativity condition

öA,C,D é öA,B,C = öA,B,D é öB,C,D

Lemma 5.8. Let C be an abelian category with enough injectives. Then the left bounded

derived category D+(C) is an R-category.

Proof. Let A•, B• and C• be three complexes representing objects in D+(C). We choose

a quasi-isomorphism of B• (resp.C•)into a complex I• (resp. J• of injective objects, and

compose the natural map from Hom(A•, I•)äLHom(I•, J•) to Hom(A•, I•)äHom(I•, J•)

with the natural map induced by composition of homomorphisms to Hom(A•, J•). This is

clearly associative.

Proposition 5.9. Let C and D be abelian categories with enough injectives. Let F be a

covariant left exact functor from C to D, and let A and B be objects in D+(C). Then F is

an R-functor, i.e. F induces a map in D(Z) from RHom(A,B) to RHom(RF (A), RF (B)),

which is compatible with the respective R-category structures.

Proof. Straightforward.

Proposition 5.10. Let A•, B• and C• be three objects in D(R).

a) There is a natural isomorphism

RHomR(A• äL
R B•, C•) ' RHomR(A•, RHomR(B•, C•))

.

b) There is a natural isomorphism

HomD(R)(A• äL
R B•, C•) ' HomD(R)(A•, RHomR(B•, C•))

.

Proof. a) is immediate by taking projective resolutions P • of A• and Q• of B• and

recalling that Hom•
R(P •äR Q•, C•) is naturally isomorphic to Hom•

R(P •,Hom•
R(Q•, C•)).

Then b) follows by applying H0 to a).
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§6. The duality theorem for non-singular curves.

Let U be a smooth geometrically connected curve over a finite field k, let ShU be the

abelian category of Weil-étale sheaves on U , and let ÄU (F ) = H0
W(U,F ) . Let j : U ! X

be an open dense embedding of U in a smooth projective curve X over k, and let F be an

object of ShX . By Proposition 5.9, ÄX induces a map RÄX in D(Z) from RHomX(F, Gm)

to RHomD(Z)(RÄX(F ), RÄX(Gm)).

Recall from Proposition 3.4 that H2
W(X,Gm) = Z and Hq

W(X,Gm) = 0 for q ï 3, which

gives us a natural map in D(Z) from RÄX(Gm) to Z[Ä2]. Now compose with the above

map to get a map î, F from RHomX(F,Gm) to RHomD(Z)(RÄX(F ), Z[Ä2]).

Theorem 6.1. Let F be either j!Z or j!Z/nZ. Then î, F is an isomorphism.

Proof. We begin with the case F = j!Z/nZ. Let f : j!Z/nZ ! I• and g : Gm ! J•

be injective resolutions. Recall from Section 2 that we have a functor † mapping Weil-

étale sheaves to étale sheaves which is left exact and takes injectives to injectives. Let

h : †(j!Z/nZ) ! L• be an injective resolution. There is a map ç : L• ! †(I•), unique up

to homotopy, such that çh = †(f).

We first claim that there exists a commutative diagram in the derived category of abelian

groups:

Hom•
WD(j!Z/nZ, J•)

(fÉ)Ä1

ÄÄÄÄ! Hom•
WD(I•, J•) ÄÄÄÄÄ! Hom•

D(Z)(Ä(I•),Ä(J•))

è

??y é

??y

Hom•
ét(†(j!Z/nZ),†J•) ÄÄÄÄ! Hom•

ét(†I•,†J•) ÄÄÄÄ! Hom•
D(Z)(Äét(†I•), Äét(†J•))

ö

??y
??y

Hom•
ét(†(j!Z/nZ),†J•)

(hÉ)Ä1

ÄÄÄÄ! Hom•
ét(L

•,†J•) ÄÄÄÄ! Hom•
D(Z)(Äét(L•),Äét(†J•))

This makes sense because, since both J• and †J• are injective, fÉ and hÉ are quasi-

isomorphisms. We next observe that Hom•
D(Z)(Ä(I•),Ä(J•)) is exactly

RHomD(Z)(RÄ(j!Z/nZ), RÄ(Gm)) and Hom•
D(Z)(Äét(L•), Äét(†J•)) is exactly

RHomD(Z)(RÄét(j!Z/nZ), RÄétR†(Gm)).
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Since we may identify Hom•
WD(j!Z/nZ, J•) with Ä(U, J•)n and Hom•

ét(†(j!Z/nZ),†J•)

with Äét(U,†J•)n, we see that the composite map öè is an isomorphism in D(Z).

We next look at the commutative diagrams:

RHomét(j!Z/nZ, R†Gm) ÄÄÄÄ! RHom(RÄét(j!Z/nZ), RÄétR†(Gm))
x??

x??

RHomét(j!Z/nZ,†Gm)) ÄÄÄÄ! RHom(RÄét(j!Z/nZ), RÄét(†(Gm))

RHom(RÄét(j!Z/nZ), RÄétR†(Gm)) ÄÄÄÄ! RHom(RÄét(j!Z/nZ), Z[Ä2])
x??

x??

RHom(RÄét(j!Z/nZ), RÄét(†(Gm)) ÄÄÄÄ! RHom(RÄét(j!Z/nZ, Q/Z[Ä3])

The first diagram is induced by the natural map from †Gm to R†Gm, and is commutative

by the R-functoriality of RÄ. Note that RÄ = RÄétR†.

The second diagram follows from the commutativity of the diagram

RÄ(Gm) ÄÄÄÄ! Z
x??

x??

RÄét(Gm) ÄÄÄÄ! Q/Z[Ä1]

This commutativity in turn follows from the natural identifications of H3
ét(X,Gm) with

H2(Ẑ, P ic(X̄)) = Q/Z, H2
W(X,Gm) with H1(Z, P ic(X̄)) = Z, and Lemma 1.2c.

Putting all this together, we get a commutative diagram:

RHomW(j!Z/nZ, Gm) îÄÄÄÄ! RHomD(Z)(RÄ(j!Z/nZ), Z[Ä2])

ï

x?? µ

x??

RHomét(j!Z/nZ,†(Gm)) óÄÄÄÄ! RHomD(Z)(RÄét(j!Z/nZ, Q/Z[Ä3])

We wish to complete the proof of the first part of the theorem (î is an isomorphism) by

showing that ï, µ and ó are all isomorphisms.

Let K• be an injective resolution of †Gm. Our map ï is induced by a map ö from

K• to †J•, unique up to homotopy, which commutes with the obvious maps from †Gm
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to K• and †J•. We claim that the map induced by ö from Homét(j!Z/nZét,K•) to

Homét(j!Z/nZét,†J•) = HomW(Z/nZ, J•) is a quasi-isomorphism.

We have the two spectral sequences:

Hp
ét(X,ExtqX(j!Z/nZ)ét,†Gm)) ) Extp+q

ét,X((j!Z/nZ)ét,†Gm)

Hp
W(X,ExtqX(j!Z/nZ, Gm)) ) Extp+q

W,X(j!Z/nZ, Gm)

and a map between them induced by ö. By Proposition 2.2(g) this map induces an isomor-

phism on the left-hand side of the spectral sequences and so also on the right-hand side,

which completes the proof of the claim and shows that ï is an isomorphism.

We next look at the map ó. Let A be an abelian category with enough injectives and Ä be

a left exact functor from A to the category Ab of abelian groups. Let M and N be objects

of A. Then the Yoneda product map from ExtpA(M,N) to HomAb(RqÄ(M), Rp+qÄ(N)) is

described in terms of derived categories as follows:

Since Ä induces an R-functor we have a map RÄ from RHomA(M, N) to

RHomAb(RÄ(M), RÄ(N). Let S• and T • be two complexes of abelian groups. By an

easy variant of part of Exercise 3.6.1 of [Weib] we have a map:

hp(RHom•(S•, T •))
õqÄÄÄÄ! Hom(hq(S•), hp+q(T •))

The above Yoneda product map is obtained by composing õq with RÄ, where S• =

RÄ(M) and T • = RÄ(N). We now look at the commutative diagram:

hp(RHomD(Z)(RÄ(j!Z/nZ), RÄ(Gm))) å1ÄÄÄÄ! hp(RHomD(Z)(RÄ(j!Z/nZ), Q/Z[Ä3]))

õ3Äp

??y õ03Äp

??y

Hom(H3Äp(j!Z/nZ),H3(Gm)) å2ÄÄÄÄ! Hom(H3Äp(j!Z/nZ), h3(Q/Z[Ä3]))

We have the Yoneda map from Extpét(j!Z/nZ, Gm) to Hom(H3Äp(j!Z/nZ), Q/Z)) given

by õ3Äp é RÄ. (Recall that H3
ét(Gm) = Q/Z)). It is immediate that õ03Äp and å2 are
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isomorphisms. Since Deninger has shown [Den] that the Yoneda map is an isomorphism, it

follows that ó = å1 éRÄ is an isomorphism.

To show that µ is an isomorphism, it suéces to show that if M• is any complex of abelian

groups with torsion homology groups, then RHom(M•, Q) is acyclic. This in turn follows

immediately because Q is injective, and if M is a torsion abelian group, Hom(M, Q) is zero.

So we have shown that î, j!Z/nZ is an isomorphism, and we want to completete the proof

of the theorem by showing that î, j!Z is an isomorphism. We first point out the easy

Lemma 6.2. Let M and N be finitely generated abelian groups and let f be a map from M

to N such that f induces an isomorphism from M/nM to N/nN for every positive integer

n. Then f is an isomorphism.

Lemma 6.3. Let M•
and N•

be complexes of abelian groups and g a map from M•
to N•

.

Assume:

1)The homology groups hi(M•) and hi(N•) are finitely generated for all i and zero for i

large.

2) The map g induces an isomorphism from hi(M•/nM•) to hi(N•/nN•
for all integers

i and positive integers n. Then g is a quasi-isomorphism of complexes.

Proof. This is an straightforward descending induction on i, using Lemma 6.2.

Lemma 6.4. Let G be an object of ShU . There is a canonical isomorphism in D(Z) between

RHomX(j!G,Gm,X) and RHomU (G, Gm,U ).

Proof. Because jÉ has the exact left adjoint j!, jÉ takes injectives to injectives. Since

jÉ is exact, it carries a resolution of Gm,X to a resolution of jÉGm,X = Gm,U . The first

isomorphism then follows immediately from the adjointness of jÉ and j!.

To complete the proof of Theorem 6.1, we need only point out that the cohomology

groups in question are finitely generated and zero for large i by Theorem 3.3, Proposition

3.4, and Lemma 6.4.

Theorem 6.5. RÄU (Gm) is naturally isomorphic to RHomD(Z)(RÄX(j!Z), Z[Ä2])
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Proof. Since RÄU (F ) is the same as RHomU (Z, F ), this follows immediately from The-

orem 6.1 and Lemma 6.4.

§7. The computation of some cohomology groups

In this section we will compute the Weil-étale cohomology of Gm and j!Z on a smooth

curve V .

Theorem 7.1. Let X be a projective smooth geometrically connected curve over the finite

field k. Then

a) H0
W(X,Gm) = kÉ, H1

W(X,Gm) = Pic(X), H2
W(X, Gm) = Z, and Hi

W(X,Gm) = 0

for i ï 3.

b)H0
W(X, Z) = Z, H1

W(X, Z) = Hom(Pic(X), Z) = Z, H2
W(X, Z) = Ext(Pic(X), Z)

which is the Pontriagin dual of the finite group Pic0(X), H3
WX, Z) = Ext(kÉ, Z) which is

the Pontriagin dual of the finite group kÉ, and Hi
W(X, Z) = 0 for i ï 4.

Let V = X-S be a quasiprojective smooth curve over the finite field k, with X projective,

smooth and geometrically connected, and S finite and non-empty. Let j : V ! X be the

natural open immersion and i : S ! X be the natural closed immersion. Then

c) H0
W(U,Gm) = U(V ) = the units of V . We have the exact sequence:

0 ! Pic(V ) ! H1
W(V,Gm) ! Hom(

a

S

Z/Z, Z) ! 0

and Hi
W(V, Gm) = 0 for i ï 2.

d) H0
W(X, j!Z) = 0, H1

W(X, j!Z) =
`

S Z/Z. We have the exact sequence:

0 ! Ext(Pic(V ), Z) ! H2
W(X, j!Z) ! Hom(U(V ), Z) ! 0

and H3
W(X, j!Z) = Ext(U(V ), Z) = the Pontriagin dual of kÉ.

Proof. We have proven a) as part of Proposition 3.4. For c) we claim that Hi
W(X, jÉGm)

is naturally isomorphic to Hi
W(U,Gm). We have the two spectral sequences following from

Proposition 2.1:
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Hp(Z,Hq
ét(X̄, j̄ÉGm)) ) Hp+q

W (X, jÉGm)

Hp(Z, Hq
ét(Ū , Ḡm)) ) Hp+q

W (U,Gm)

Since Rij̄ÉGm = 0 for i ï 1, the Leray spectral sequence degenerates, and we conclude

that Hp
ét(X̄, j̄ÉGm) = Hp

ét(Ū , Gm). Hence the two above spectral sequences agree on their

E2-terms, and hence in the limit, which proves the claim.

From the exact sequence of sheaves

0 ! Gm ! jÉGm ! iÉZ ! 0

we get, using the above claim, the exact sequence

0 ! H0
W(X, Gm) ! H0

W(U,Gm) ! H0
W(S, Z) ! H1

W(X,Gm) !

H1
W(U,Gm) ! H1

W(S, Z) ! H2
W(X,Gm) ! H2

W(U,Gm) ! 0

which easily yields

0 ! Pic(U) ! H1
W(U,Gm) ! Hom(

a

S

Z/Z, Z) ! 0

and H2
W(U,Gm) = 0, thus proving c).

We next recall from Weibel ([Weib], Exercise 3.6.1) that for A• any complex of abelian

groups, we have the exact sequence

0 ! Ext(h1Äp(A•), Z) ! hp(RHom(A•, Z)) ! Hom(hÄp(A•), Z) ! 0

Now d) follows immediately from c), together with the duality theorem (Theorem 6.1)

and Lemma 6.4.
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§.8 Values of zeta-functions at zero

In this section we will prove the conjecture given in the introduction for curves, for smooth

projective varieties, and a modified form for smooth surfaces. Let k = Fq be a finite field.

Let Ẑ be the Galois group of k̄ over k, and let û be the Frobenius element of k, which sends

x to xq and topologically generates Ẑ. Let Z denote the subgroup of Ẑ generated by û. Let

í in H1
W(k, Z) = H1(Z, Z) = Hom(Z, Z) be the homomorphism which sends û to 1.

We also denote by í the pullback of í to H1
W(X, Z), where X is any scheme over k. For

any sheaf (or complex of sheaves) F on the Weil-étale site of X, there is a natural pairing

F ä Z to F induced by x ä n ! nx. This pairing induces a map [í from Hi
W(X,F ) to

Hi+1
W (X,F ). Observe that since í lies in H1, í [ í = 0, so cupping with í makes the

cohomology groups (or hypercohomology groups) Hi
W(X,F ) into a complex.

We now restate the conjecture:

Conjecture 8.1. Let U be a geometrically connected quasi-projective variety over k, and

let j : U ! X be an open dense immersion of U in a projective variety X. Then

a) The cohomology groups Hi
W(X, j!Z) are finitely generated abelian groups, independent

of the choice of open immersion j.

b) The alternating sum of the ranks of the cohomology groups Hi
W(X, j!Z) is equal to

zero.

c) The order of the zero of the zeta-function Z(U, t) at t = 1 is given by the ”secondary

Euler characteristic”
P

(Ä1)iiri, where ri = rank(Hi
W(X, j!Z)).

d) The homology groups hi
W(X, j!Z) of the complex (H•

W(X, j!Z), í) are finite.

Let ZÉ(U, 1) be limt!1Z(U, t)(1Ä t).

e) ZÉ(U, 1) is equal, up to sign, to the alternating product ü(j!Z) of the orders of these

homology groups:
Q

i o(hi
W(X, j!Z))(Ä1)i

.

Theorem 8.2. Conjecture 8.1 is true if U is projective and smooth, or if U is a smooth

surface, or if U is a curve. (If U is a smooth surface, we must also take the projective

surface X containing U to be smooth).
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We begin with the case where U is projective and smooth, so X = U and j is the identity.

Lemma 8.3. Let U be projective and smooth. Then Theorem 8.2 is true for U and the

cohomology groups Hi
W(U, Z) are finite for i ï 2.

Proof of lemma. We start with the formula of Milne ([M2], Theorem 0.4a). :

ZÉ(X, 1) = o((H2
ét(X,Z)cotor)

Y

iï3

(o(Hi
ét(X, Z))(Ä1)i

Note that we have switched here from Milne’s use of ê(X, s) to Z(X, t), where t = qÄs,

and corrected the obvious misprint (q1Äs should be qÄs).

We should point out here that the formula of Milne combines the cohomological descrip-

tion of the zeta-function due to M. Artin and Grothendieck, a deep theorem of Gabber

([G]), Deligne’s proof of the Riemann hypothesis for varieties over finite fields [Del], and

some sophisticated p-adic computations due to Milne. Milne of course also shows that the

groups Hi
ét(X, Z) are finite for i ï 3 and that the cotorsion quotient group of H2

ét(X, Z) is

finite. In fact he shows that H2
ét(X, Z) is the direct sum of Q/Z and a finite group.

A comparison of the two spectral sequences of Proposition 2.2f) shows that the natural

map from Hp
ét(X, Z) to Hp

W(X, Z) is an isomorphism for p ï 3. We also have the exact

sequence:

0 ! H2(Ẑ,H0
ét(X̄, Z)) ! H2

ét(X, Z) ! H2
W(X, Z) ! 0

which identifies H2
W(X, Z) with H2

ét(X, Z)cotor, and of course shows that its order is finite.

To show the identity of Milne’s Euler characteristic with ours, it only remains to verify

that the map from H0
W(X, Z) to H1

W(X, Z) given by cup product with í is an isomorphism.

But this cup product may be identified with the cup product map from H0(Z,H0
ét(X̄, Z))

to H1(Z,H0
ét(X̄, Z)), which is tautologically an isomorphism. So we have proved parts d)

and e) of the theorem, and b) is an immediate consequence of d). Also, a) and c) follow

immediately from Theorem 3.2
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Lemma 8.4. Let U = XÄZ. Let j be the open immersion of U in X and let i be the closed

immersion of Z in X. Assume that Theorem 8.2 holds for Z and that X is projective and

smooth. Assume also that the cohomology groups of U with compact support Hi
W(X, j!Z)

are finitely generated and independent of the choice of j. Then Theorem 8.2 holds for U .

Proof. It follows from Lemma 8.3 that Theorem 8.2 also holds for X and the cohomology

groups Hi
W(X, Z) are finite for i ï 2. We have the exact sequence of Weil-étale sheaves on

X:

0 ! j!Z ! Z ! iÉZ ! 0

Let ãi be the induced map from Hi
W(X, j!Z) to Hi

W(X, Z) and åi be the induced map

from Hi
W(X, Z) to Hi

W(X, iÉZ). Let gi be the the cup product map ([í) from Hi
W(X, Z)

to Hi+1
W (X, Z), fi the cup product map from Hi

W(X, j!Z) to Hi+1
W (X, j!Z), and hi the cup

product map from Hi
W(X, iÉZ) to Hi+1

W (X, iÉZ). Let Ai be the image of ãi, Bi be the image

of åi, and Ci be the image of çi.

Let èi be the map induced by fi from Ai to Ai+1, let éi be the map induced by hi from

Bi to Bi+1), and let öi be the map induced by fi from Ci to Ci+1. Then we have the

commutative diagram:

0 ÄÄÄÄ! H0
W(X, Z) å0ÄÄÄÄ! B0 ÄÄÄÄ! 0

??y g0

??y é0

??y

0 ÄÄÄÄ! A1 ÄÄÄÄ! H1
W(X, Z) å1ÄÄÄÄ! B1 ÄÄÄÄ! 0

??y g1

??y é1

??y

0 ÄÄÄÄ! A2 ÄÄÄÄ! H2
W(X, Z) å2ÄÄÄÄ! B2 ÄÄÄÄ! 0

??y
??y

??y

Since we are assuming that Hi
W(X, Z) is finite for i ï 2, we see that Ai and Bi are finite

for i ï 2. Let Hi(è) = Ker(èi)/Im(èiÄ1), and similarly for Hi(é), Hi(ö), Hi(f),Hi(g), and



THE WEIL- ÉTALE TOPOLOGY 23

Hi(h). Then Hi(è) and Hi(é) are finite for i ï 2. It follows from the above commutative

diagram that we have the long exact sequence

0 ! H0(g) ! H0(é) ! H1(è) ! H1(g) ! H1(é) ! . . .

Similarly, we have the exact sequences

0 ! H0(é) ! H0(h) ! H0(ö) ! H1(é) ! H1(h) ! . . .

0 ! H0(ö) ! H1(f) ! H1(è) ! H1(ö) ! H2(f) ! . . .

Since we are assuming the conjecture is true for X and for Z it follows that Hi(g) and

Hi(h) are finite for all i. It then follows without diéculty that all the groups in the three

above exact sequences are finite.

If ï is any one of f, g, h, é, è or ö, define ü(ï) to be
Q

o(hi(ï))(Ä1)i

. Then the three

exact sequences yield ü(g) = ü(è)ü(é), ü(h) = ü(é)ü(ö), and ü(è) = ü(f)ü(ö), from which

it follows that ü(g) = ü(f)ü(h). Since we also have that ZÉ(X, 1) = ZÉ(U, 1)ZÉ(Z, 1), we

have proven b), d) and e) of the Theorem for U , and we have assumed a) as part of the

hypothesis. It remains to prove c).

Lemma 8.5. . Let U be as in Lemma 8.4. Then a) The order of the zero of Z(U, t) at

t = 1 is equal to Ä
P

i(Ä1)irank((Hi
ét(X̄, j!Z))Z). b) The groups Hi

ét(X̄, j!Z) are semisimple

at zero (a Z-module M is semis-simple at zero if the natural map from MZ
to MZ is an

isomorphism modulo torsion.)

Proof. Since part c) of theorem 8.2 is true for X and for Z, and taking Z-invariants is

exact modulo torsion, we get part a) of the lemma. The fact that the cohomology groups

Hi
ét(X̄, iÉZ) are semi-simple at zero automatically implies (since Hi

ét(X̄, Z) is torsion for

i ï 1) that the groups Hi
ét(X̄, j!Z) are also semi-simple at zero.

The proof of Lemma 8.4 now is concluded by the observation that a) and b) of Lemma

8.5 formally imply part c) of Theorem 8.2.
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Now we return to the proof of the original theorem. Lemmas 8.3 and 8.4 immediately

yield the theorem for smooth curves. Then an argument essentially identical to that used in

the proof of Lemma 8.4 yields the result for all curves, by comparing an arbitrary curve to

a smooth open dense subset. Finally the result for any smoth surface follows immediately

by using Lemma 3.1, Lemma 8.3 and Lemma 8.4.
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[Weil] Weil, A. Sur la théorie du corps de classes, J. Math. Soc. Japan 3 (1951) 1-35


