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1 Introduction

Starting with a matroid M , one can construct various algebraic objects possessing useful properties
that can be used to answer purely combinatorial questions. Ardila and Klivans give one such example
of an object in [AK06]. Given a loopless matroid M , they define a fan ΣM , called the Bergman fan of
M whose Chow ring AM leads to many interesting combinatorial results [Ard24]. Most notably, Chow
rings of Bergman fan of matroids are used in Adiprasito’s, Huh’s, and Katz’s proof of the Heron-Rota-
Welsh conjecture which asserts the absolute values of the characteristic polynomial of any matroid are
log-concave [AHK18]. Ardila, Denham, and Huh give another interesting class of fans in [ADH23].
Given a loopless and coloopless M , they define a fan ΣM,M⊥ , called the conormal fan of M , and they
use its Chow ring AM,M⊥ to prove the log concavity of the h-vector of the broken circuit complex.

A lot remains unknown about Chow rings of conormal fans relative to Chow rings of Bergman fans.
Our main point of comparison will be the Hilbert-Poincaré series of the Chow rings of these two classes
of fans. For a graded ring R, let HR(t) denote its Hilbert-Poincaré series over Z. The main result of
[AHK18] about the validity of the “Kähler” package for the Chow ring AM of the Bergman fan ΣM

directly implies that the coefficients of HAM
(t) are palindromic and form a unimodal sequence [Fer+24,

p. 12-13]. Ferroni, Matherne, Stevens and Vecchi in [Fer+24] further investigate the Hilbert-Poincaré
series of the Chow ring of Bergman fans with the goal of studying the following conjecture:

Conjecture 1.1. ([Gal05, Conjecture 8.18]) The Hilbert-Poincaré series HAM
(t) of the Chow ring

AM is real-rooted for any loopless matroid M .

In particular, they prove that HAM
(t) is γ-positive for any loopless matroid M [Fer+24, Theorem

3.25]. For the definition of γ-positivity, we refer the reader to Section 2. In addition, they prove the
following general formula for HAM

(t), when M is an arbitrary loopless matroid, in terms of chains of
flats of M :

Proposition 1.2. ([Fer+24, Proposition 3.15]) For an arbitrary loopless matroid M ,

HAM
(t) =

∑
∅=F0⊊F1⊊···⊊Fm

m∏
i=1

t(1− trank(Fi)−rank(Fi−1)−1)

1− t
.

Here, the sum is taken over all the nonempty chains of flats of M starting at the empty set, i.e.,
∅ = F0 ⊊ F1 ⊊ · · · ⊊ Fm. This formula is a direct consequence of the explicit Gröbner basis for the
Chow ring of Bergman fans provided by Feichtner and Yuzvinsky in [FY04]. In addition, when M is a
loopless uniform matroid of size n and rank r, Ferroni, Matherne, Stevens and Vecchi prove an explicit
formula for HAM

(t):
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Proposition 1.3. ([Fer+24, Theorem 3.25]) For a loopless uniform matroid M of size n and rank r,

HAM
(t) =

r−1∑
j=0

(
n

j

)
dj(t)(1 + t+ · · ·+ tr−1−j)

where dj(x) denotes the j-th derangement polynomial.

Brändén and Vecchi further prove that HAM
(t) is real-rooted when M is uniform in [BV25, Theorem

3.1].

In contrast, there has been no discussion about the palindromicity, unimodality, γ-positivity or real-
rootedness of the Hilbert-Poincaré series of conormal fans in the literature yet, nor has there been
explicit computations of of this series for any special families of matroids. In this paper, we aim to fill
this vacuum by partially answering the following question:

Question 1.4. Is the Hilbert-Poincaré series HA
M,M⊥ (t) of a loopless and coloopless matroid M

palindromic, real-rooted, γ-positive or unimodal? And can we compute it explicitly for special families
of matroids?

In particular, as our main result, we show that the conormal Chow ring AM,M⊥ is isomorphic to a
tensor product of Chow rings AM , AM⊥ .

Proposition 1.5. Let M be a loopless and coloopless uniform matroid. Then we have

AM,M⊥ ∼= AM ⊗Z AM⊥ .

As a direct corollary of Proposition 1.5, we get that the Hilbert-Poincaré series HA
M,M⊥ (t) is a product

of the Hilbert-Poincaré series of AM , AM⊥ .

Corollary 1.6. If M is a loopless uniform matroid, then

HA
M,M⊥ (t) = HAM

(t)HA
M⊥ (t).

Combining Corollary 1.6 with Proposition 1.3, we get the following explicit formula for the Hilbert-
Poincaré series HA

M,M⊥ (t) when M is uniform:

Proposition 1.7. Let M be a uniform matroid of size n and rank r. Then

HA
M,M⊥ (t) =

r−1∑
j=0

(
n

j

)
dj(t)(1 + t+ · · ·+ tr−1−j)

n−r−1∑
j=0

(
n

j

)
dj(t)(1 + t+ · · ·+ tn−r−1−j)

 .

In addition, by combining 1.6 with Theorem 3.1 in [BV25], we get the following proposition about the
real-rootedness, γ-positivity and unimodality of HA

M,M⊥ (t):

Proposition 1.8. Let M be a uniform matroid. Then HA
M,M⊥ (t) is real-rooted, γ-positive, and

unimodal.

The conormal Chow ring AM,M⊥ of a matroid M is defined in terms of the biflats, bichains and biflags
of M . These three notions are analogues of the notions of flats, chains and flags of M , respectively,
and will be defined (together with conormal Chow rings) later in Section 2. In Proposition 3.1 and
3.3, we prove two important properties about the structure of biflats, bichains and biflags of a uniform
matroid M . These two propositions are crucial for our proof of Proposition 1.5. In fact, in section 5,
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we discuss how if any matroid M satisfies the statements of Proposition 3.1 and Proposition 3.3, then
it also satisfies the statement of Propositon 1.5. On the other hand, in Proposition 5.1 and Proposition
5.4, we prove that if a matroid M satisfies the statement of Proposition 3.1 or Proposition 3.3, then
M must be uniform. We refrain from stating the precise statments of Proposition 3.1 and Proposition
3.3 for now, and postpone it to Section 3.

The outline of the paper is as follows: In Section 2, we review the definitions of Bergman and conormal
fans and their Chow rings as well as the definitions of palindromicity, unimodality, and γ-positivity.
We also define derangement polynomials and give a sketch of the proof of the derangement polynomial
formula for the Hilbert-Poincaré series of Chow rings of uniform matroids (Proposition 1.3) described
in [Fer+24]. In Section 3, we prove Proposition 3.1 and 3.3. In Section 4, we prove Proposition
1.5, Corollary 1.6, Proposition 1.7, and Proposition 1.8. In Section 5, we prove Proposition 5.1 and
Proposition 5.4. In Section 6, we discuss potential further research questions.

2 Background

2.1 Bergman and Conormal Fans and their Chow Rings

We now define Bergman and conormal fans of arbitrary matroids and their respective Chow rings. We
rely on definitions of the fans given in [NP24], and the definitions of the Chow rings given in [ADH23]
and [Ard24]. For the remainder of this section, let M = (E,FM ) be a loopless matroid with a ground
set E and a set of flats FM . Recall that we can define a poset structure on FM by letting F ≤ F ′

whenever F ⊆ F ′ for any two flats F, F ′ ∈ FM . Let M⊥ = (E,FM⊥) be the dual matroid of M . Let
Ur
n denote the uniform matroid of rank r with ground set {1, 2, ..., n}, and recall that the dual of Ur

n

is the uniform matroid Un−r
n .

The Bergman fan ΣM of the matroid M is the simplicial fan inside the tropical projective space NE

whose cones corresponds to flags of flats of M .

Definition 2.1. Given a ground set E, the tropical projective space NE is the (n − 1)-dimensional
real vector space

RE/ReE , eE =
∑
i∈E

ei

where ei denotes the i-th standard basis vector of RE .

The support of the Bergman fan ΣM is tropical linear space trop(M) of M .

Definition 2.2. The tropical linear space of a matroid M is defined to be

trop(M) := {z ∈ NE : min
i∈C

zi is achieved at least twice for every circuit C of M} ⊆ NE .

The Bergman fan ΣM is a subdivision of trop(M) defined in the following way:

Definition 2.3. The Bergman fan ΣM of the matroid M is the simplicial fan in NE whose support
is trop(M) and whose cones are

σF = cone(eF )F∈F , for any flag of flats F of M

where a flag of flats F is any subset {F1, ..., Fm} of the set of flats FM such that F1 ⪇ F2 ⪇ · · · ⪇ Fm.

Definition 2.4. The Chow ring of the matroid M is the graded ring

AM := SM/(IM + JM )

where
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• SM := Z[xF : F ∈ FM\{∅, E}],

• IM := ⟨xFxF ′ : xF , xF ′ ∈ FM\{∅, E} are incomparable⟩,

• JM := ⟨γi − γj : i, j ∈ E⟩ where
γi :=

∑
F∋i

xF .

The Hilbert-Poincaré series HAM
(t) of M is sometimes referred to as the Chow polynomial of M .

Example 2.5. We compute the Chow ring AM of the uniform matroid M = U2
4 . We first compute

each one of SM , IM , Jm individually. We have FM = {∅, 1, 2, 3, 4, E}, so we get

SM = Z[x1, x2, x3, x4].

In addition, all pairs of nonempty proper flats of M are incomparable, so IM is generated by monomials
xixj where i, j ∈ {1, 2, 3, 4}. Lastly, for any i ∈ E, we have∑

F∋i

xF = xi.

This implies that J is generated by monomials xi − xj for all i, j ∈ {1, 2, 3, 4}. Thus,

AM = SM/(IM + JM ) ∼= Z[x1]/(x
2
1).

Hence, HAM
(t) = 1 + t.

Now we describe conormal fans and their Chow rings. For the remainder of the section, assume that
M is a loopless and coloopless matroid. The conormal fan of the matroid M is the simplicial fan inside
NE ×NE whose support is trop(M)× trop(M⊥) and whose cones corresponds biflags of biflats.

Definition 2.6. A biflat F |G consists of a flat F ∈ FM and a dual flat G ∈ FM⊥ such that both are
nonempty, at least one of them is proper and,

F ∪G = E.

The set of biflats of M is denoted as BFM,M⊥ . We endow the set of biflats of a matroid with the
structure of a poset by defining F |G ≤ F ′|G′ if and only if F ⊆ F ′ and G ⊇ G′. A chain of the form
F1|G1 ≤ · · · ≤ Fn|Gn where all Fi|Gi’s are distinct is called a bichain of M . An important class of
bichains is given in the following definition:

Definition 2.7. A bichain F|G = F1|G1 ≤ · · · ≤ Fn|Gn of M is called a biflag if and only if we have⋃
F |G∈F|G

F ∩G ̸= E.

Example 2.8. Let M = U2
4 . The set of biflats of M is given by

BFM,M⊥ = {1|E, 2|E, 3|E, 4|E,E|1, E|2, E|3, E|4}

The set of bichains of M consists of 1-element bichains F |G where F |G ∈ BFM,M⊥ as well as the
collection of 2-element bichains F |E ≤ E|G where F ∈ FM\{∅, E} and G ∈ FM⊥\{∅, E}. One can
verify that each of these bichains is also a biflag of M , so the set of bichains and biflags of M is equal.

For any subset S ⊆ E, define the vectors eS and fS to be the image of
∑

i∈S ei in the first and the
second copy of NE , respectively. For two subsets S, T ⊆ E, define eS|T to be the vector (eS , fT ) in
NE ×NE .
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Definition 2.9. The conormal fan of M , denoted ΣM,M⊥ , is the simplicial fan in NE × NE whose
support is trop(M)× trop(M⊥), and whose cones are given by

σF|G = cone{eF |G}F |G∈F|G , for any biflag of biflats F|G.

Remark 2.10. The definition of the tropical linear space trop(M) reveals why we require our matroid
M to be a loopless and coloopless. If M contains a loop a, then {a} is a circuit and hence

trop(M) ⊆ {z ∈ NE : min
i∈{a}

zi is achieved at least twice} = ∅.

Similarly, we get trop(M⊥) = ∅ if M has a coloop.

Definition 2.11. The conormal Chow ring of M is the graded ring

AM,M⊥ := SM,M⊥/(IM,M⊥ + JM,M⊥)

where

• SM,M⊥ := Z[xF |G : F |G ∈ BFM,M⊥ ],

• IM,M⊥ := ⟨xF|G : F|G is a subset of BFM,M⊥ that is not a biflag⟩ where xF|G is a monomial
defined by

xF|G :=
∏

F |G∈F|G

xF |G,

• JM,M⊥ = ⟨γi − γj : i, j ∈ E⟩+ ⟨γi − γj : i, j ∈ E⟩ where γi, γi are linear functions defined by

γi :=
∑

F∋i,F ̸=E

xF |G, γi :=
∑

G∋i,G ̸=E

xF |G.

Example 2.12. Let M = U2
4 . Based on Example 2.8, we get

SM,M⊥ = Z[x1|E , x2|E , x3|E , x4|E , xE|1, xE|2, xE|3, xE|4]

In addition, since every bichain of M is a biflag, then one can check that

IM,M⊥ = ⟨xi|Exj|E : i, j ∈ E, i ̸= j⟩+ ⟨xE|ixE|j : i, j ∈ E, i ̸= j⟩.

Finally, for any i ∈ E,

γi =
∑

F∋i,F ̸=E

xF |G = xi|E , γi =
∑

G∋i,G̸=E

xF |G = xE|i.

Thus,
JM,M⊥ = ⟨xi|E − xj|E : i, j ∈ E⟩+ ⟨xE|i − xE|j : i, j ∈ E⟩.

Now, it is straightforward to check that

AM,M⊥ = SM,M⊥/(IM,M⊥ + JM,M⊥) ∼= Z[x1|E , xE|1]/(x
2
1|E , x

2
E|1).

Hence, HA
M,M⊥ (t) = 1 + 2t+ t2.
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2.2 Unimodality, γ-Positivity and Real-Rootedness

We define three conditions on polynomials that are relevant for our study of the Hilbert-Poincaré
series HA

M,M⊥ (t) and HAM
(t), namely unimodality, γ-positivity and real-rootedness. A polynomial

f(x) ∈ R[x] is said to be real-rooted if all of its roots are real. As it is usually hard to prove that a
polynomial has only real roots, it is useful to consider proving the unimodality and γ-positivity of a
polynomial first.

Definition 2.13. A polynomial f(x) = anx
n + · · · + a0 is said to be unimodal if its coefficients

form a unimodal sequence, i.e., there exists some 0 ≤ t ≤ n such that a0 ≤ a1 ≤ · · · ≤ at and
at ≥ at+1 ≥ · · · ≥ an.

While the notion of unimodality applies to any polynomial, the concept of γ-positivity only applies to
symmetric polynomials.

Definition 2.14. A polynomial f(x) =
∑

i aix
i is said to be symmetric with center of symmetry d/2

if there exists a d ∈ Z such that ai = ad−i for all i ∈ Z. This condition is equivalent to the existence
of a d ∈ Z such that xdf(x−1) = f(x). If d = deg(f), then we call f(x) palindromic.

Symmetric polynomials can be expressed in different bases. For example, the set {xi(1 + x)d−2i}⌊
d
2 ⌋

i=0

forms a basis for the space of all symmetric polynomials with center of symmetry d
2 . This is guaranteed

by the following proposition whose proof can be found in [Gal05]:

Proposition 2.15. If f(x) is a symmetric polynomial with center of symmetry d
2 , then there exist

integers γ0, ..., γ⌊ d
2 ⌋

such that

f(x) =

⌊ d
2 ⌋∑

i=0

γix
i(1 + x)d−2i. (1)

Definition 2.16. For a symmetric polynomial f(x) with center of symmetry d
2 , define γ0, ..., γ⌊d/2⌋ as

in (1). We define the γ-polynomial associated to f by

γ(f, x) :=

⌊ d
2 ⌋∑

i=0

γix
i.

If f(x) is palindromic, we say that f(x) is γ-positive if all the coefficients of γ(f, x) are nonnegative.

Example 2.17. Consider the palindromic f(x) = 1+37x+72x2+37x3+x4 with center of of symmetry
d/2 = 2. It is immediate that f(x) is unimodal. To check γ-positivity, we express f(x) in the basis

{xi(1 + x)d−2i}⌊
d
2 ⌋

i=0 = {(1 + x)4, x(1 + x)2, x2} in the following way:

f(x) = (1 + x)4 + 33x(1 + x)2 + 0x2.

Hence, γ(f, x) = 1 + 33x, and f(x) is γ-positive.

Unimodality and γ-positivity are weaker condition on a polynomial than real-rootedness. More pre-
cisely, we have the following chain of implications whose proofs can be found in [Brä15] and [Gal05].

Proposition 2.18. Let f(x) be a symmetric polynomial with nonnegative coefficients. Then

f(x) is real-rooted =⇒ f(x) is γ-positive =⇒ f(x) is unimodal.

Example 2.19. The palindromic polynomial g(x) = 1 + 5x + 6x2 + 5x3 + x4 is unimodal, but it is
not γ-positive since γ(g, x) = 1+ x− x2. The palindromic polynomial h(x) = 1+ 4x+ 6x2 + 4x3 + x4
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is γ-positive since γ(h, x) = 1, but it is not real-rooted as all its roots are not real. The palindromic
γ-positive polynomial f(x) = 1 + 37x+ 72x2 + 37x3 + x4 from Example 2.17 is real-rooted with roots

−1,−1, 2
−35−

√
1221

, −35−
√
1221

2 .

2.3 Derangement Polynomials and The Hilbert-Poincaré series of Chow
Rings of Uniform Matroids

We define derangement polynomials and sketch the proof provided in [Fer+24] of Proposition 1.3 which
provides an explicit formula involving derangement polynomials for the Hilbert-Poincaré series HAM

(t)
when M is uniform. For the full proof, we refer the reader to [Fer+24].

We say that a permutation σ ∈ Sn on {1, 2, ..., n} is a derangement if σ(i) ̸= i for all i. We denote the
set of all derangements of Sn as Dn. We define the n-th derangement polynomial dn(x) for n ≥ 1 as

dn(x) :=
∑

σ∈Dn

xexc(σ)

where exc(σ) := |{i ∈ {1, 2, ..., n} : σi > i}| denotes the excedances of σ. The first few values of dn(x)
are as follows:

dn(x) =



1 for n = 0

0 for n = 1

x for n = 2

x2 + x for n = 3

x3 + 7x2 + x for n = 4

x4 + 21x3 + 21x2 + x for n = 5
...

We note here that d0(x) = 1 by convention. For a summary of the properties of derangement polynomi-
als, we refer the reader to [Fer+24]. We replicate the statement of Proposition 1.3 here for convenience.

Proposition 2.20. [Fer+24, Theorem 3.25] For a loopless uniform matroid M of size n and rank r,

HAM
(t) =

r−1∑
j=0

(
n

j

)
dj(t)(1 + t+ · · ·+ tr−1−j).

where dj(x) denotes the j-th derangement polynomial.

Proof. (Sketch) The first step of the proof is to letM = Un
n and to prove that derangement polynomials

satisfy the following equality:

dn(x) =
∑

∅=F0⊊F1⊊···⊊Fm=E

m∏
i=1

x(1− xrank(Fi)−rank(Fi−1)−1)

1− x
.

Here, the sum is taken over all the nonempty chains of flats of M starting at the empty set and ending
at E, i.e., ∅ = F0 ⊊ F1 ⊊ · · · ⊊ Fm = E. The way this equality is proved is by showing the right-hand
side of the equality (which we denote as dn(x)) satisfies the recurrence

dn(x) =

n−2∑
j=0

dj(x)(x+ x2 + · · ·+ xn−j−1),
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which by [JMS19] implies that dn(x) = dn(x) for n ≥ 1. For the next step of the proof, assume
M = Ur

n. By Proposition 1.2,

HAM
(t) =

∑
∅=F0⊊F1⊊···⊊Fm

m∏
i=1

t(1− trank(Fi)−rank(Fi−1)−1)

1− t
.

By considering which chains of flats end in E or not, and by using the first step, we can rearrange the
sum on the right in the following way:

HAM
(t) =

r−1∑
j=0

dj(t) +

r−1∑
j=0

dj(t)
t(1− tr−j−1)

1− t

=

r−1∑
j=0

dj(t)

(
1 +

t(1− tr−j−1)

1− t

)

=

r−1∑
j=0

dj(t)(1 + t+ · · ·+ tr−1−j).

3 Structure of Biflats and Bichains of Uniform Matroids

We prove two useful facts for our computation of the conormal Chow ring AM,M⊥ when M is uniform
in Section 4. In Proposition 3.1, we compute the biflats of the uniform matroid. In Proposition 3.3,
we show that every bichain of the uniform matroid is a biflag. Recall the flats of the uniform matroid
M = Ur

n are given by set the {A ⊆ E : |A| ≤ r − 1} ∪ {E}.

Proposition 3.1. Let M = Ur
n be the uniform matroid of rank r with ground set E = {1, ..., n}. Then

BFM,M⊥ = {F |E : F ∈ FM\{∅, E}} ∪ {E|G : G ∈ FM⊥\{∅, E}}.

Equivalently,

BFM,M⊥ = {F |E : F ⊆ E and 1 ≤ |F | ≤ r − 1} ∪ {E|G : G ⊆ E and 1 ≤ |G| ≤ n− r − 1}.

Proof. We first prove the reverse inclusion. The dual of Ur
n is Un−r

n , hence

FUr
n
= {F ⊆ E : |F | ≤ r − 1} ∪ {E} and FUn−r

n
= {G ⊆ E : |G| ≤ n− r − 1} ∪ {E}.

Thus, any F |E in {F |E : F ⊆ E and 1 ≤ |F | ≤ r − 1} is a biflat. Similarly, any E|G in {E|G : G ⊆
E and 1 ≤ |G| ≤ n− r − 1} is also a biflat, so the reverse inclusion holds.

For the forward inclusion, let F |G ∈ BFM,M⊥ . Then,

F ∈ {A ⊆ E : |A| ≤ r − 1} ∪ {E} and G ∈ {A ⊆ E : |A| ≤ n− r − 1} ∪ {E}.

We know that at least one of F or G is proper. Without loss of generality, assume that F ̸= E
so that |F | ≤ r − 1. We claim that G = E. Towards a contradiction, assume otherwise. Then,
G ∈ {A ⊆ E : |A| ≤ n−r−1}, and so |G| ≤ n−r−1. By assumption, F∪G = E, so |F |+|G| ≥ |E| = n.
On the other hand,

|F |+ |G| ≤ (r − 1) + (n− r − 1) = n− 2 < n.
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which is a contradiction. Therefore, G = E, and so

F |G ∈ {F |E : F ⊆ E and 1 ≤ |F | ≤ r − 1}.

If we assume that G ̸= E, then with similar reasoning, we can show that

F |G ∈ {E|A : A ⊆ E and 1 ≤ |A| ≤ n− r − 1}.

Lemma 3.2. Let F|G be bichain of the uniform matroid M = Ur
n. Then

F|G = F1|E ≤ F2|E ≤ · · · ≤ Fj−1|E ≤ E|Gj ≤ E|Gj+1 ≤ · · · ≤ E|Gn.

Proof. Let F|G = F1|G1 ≤ · · ·Fn|Gn be a bichain of M . By Proposition 3.1, any Fi|Gi has the form
Fi|E or E|Gi. Suppose first that Gi = E for each i. Then, F|G = F1|E ≤ · · · ≤ Fn|E, giving us the
claim when j = n+1. Otherwise, assume that there is some j such that Gj ̸= E, and assume that j is
the smallest such index. If j = 1, thenGi ̸= E for each i sinceG1 ⊇ G2 ⊇ · · · ⊇ Gn. By Proposition 3.1,
this forces Fi = E for each i, and so F|G = E|G1 ≤ · · · ≤ E|Gn, giving us the third case. Otherwise,
assume that j > 1. By the minimality assumption on j, we know that G1 = · · · = Gj−1 = E. In
addition, we get that Gj , Gj+1, ..., Gn are all not equal to E since Gj ⊇ Gj+1 ⊇ · · · ⊇ Gn. Thus,
Fj = Fj+1 = · · · = Fn = E by Proposition 3.1. In total,

F|G = F1|E ≤ · · · ≤ Fj−1|E ≤ E|Gj ≤ · · · ≤ E|Gn.

Proposition 3.3. Every bichain of the uniform matroid M = Ur
n is a biflag.

Proof. Let F|G be a bichain of M . By Lemma 3.2, we get

F|G = F1|E ≤ F2|E ≤ · · · ≤ Fj−1|E ≤ E|Gj ≤ E|Gj+1 ≤ · · · ≤ E|Gn.

Suppose first 1 ≤ j ≤ n. By Proposition 3.4, |Fi| ≤ r − 1 for all 1 ≤ i ≤ j − 1, and |Gi| ≤ n − r − 1
for all j ≤ i ≤ n. We know that F1 ⊆ F2 ⊆ · · · ⊆ Fj−1. This implies that⋃

1≤i≤j−1

Fi ∩ E = Fj−1 ∩ E,

and hence,

|
⋃

1≤i≤a

Fi ∩ E| = |Fa ∩ E| ≤ r − 1.

Since Gj ⊇ Gj+1 ⊇ · · · ⊇ Gn, then with similar reasoning, we have

|
⋃

j≤i≤n

E ∩Gi| = |E ∩Gb| ≤ n− r − 1.

In total,

|
⋃

F |G∈F|G

F ∩G| ≤ |
⋃

1≤i≤a

Fi ∩ E|+ |
⋃

1≤i≤b

E ∩Gi|

≤ (r − 1) + (n− r − 1) = n− 2 < n.
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Thus, ⋃
F |G∈F|G

F ∩G ̸= E,

showing that F|G is a biflag. If j = 0, then we can follow a similar argument to the above case to
conclude

|
⋃

F |G∈F|G

F ∩G| = |Fn ∩ E| ≤ r − 1 < n.

Similarly, if j = n+ 1, then we can conclude that

|
⋃

F |G∈F|G

F ∩G| = |G1 ∩ E| ≤ n− r − 1 < n.

In both cases, we get ⋃
F |G∈F|G

F ∩G ̸= E.

4 The Conormal Chow Ring for Uniform Matroids

We express the conormal Chow ring AM,M⊥ of a loopless and coloopless uniform matroid M as a tensor
product of the Chow rings AM and AM⊥ of M and M⊥, respectively (Proposition 1.5). The definition
of AM,M⊥ includes three components, namely SM,M⊥ , IM,M⊥ , JM,M⊥ , as defined in Definition 2.11. In
Lemma 4.2, we express SM,M⊥ as a tensor product of two polynomials rings, S1 and S2 with S1

∼= SM

and S2
∼= SM⊥ . In Lemma 4.3, we express IM,M⊥ as a sum of ideal extensions (I1)

e + (I2)
e where

I1 ∼= IM and I2 ∼= IM⊥ . Similarly, in Lemma 4.4, we express JM,M⊥ as a sum of ideal extensions
(J1)

e + (J2)
e where J1 ∼= JM and J2 ∼= JM⊥ . By substituting the isomorphisms in these three lemmas

to Lemma 4.1, we deduce Proposition 1.5. Crucially, in our computation of IM,M⊥ , we use the fact
that all bichains of a uniform matroid are biflags (Lemma 3.3) to deduce that is is a Stanley-Reisner
ideal. This allows us to find the generators of IM,M⊥ by finding incomparable biflats of M .

Lemma 4.1. Let k be commutative ring. For commutative k-algebras R,S and ideals I ⊆ R, J ⊆ S,
we have

(R⊗k S)/(Ie + Je) ∼= R/I ⊗k S/J

where Ie denotes the extension of I along R → R⊗k S, and similarly for Je.

Proof. We have a natural homomorphism R⊗k S
ϕ−→ R/I ⊗k S/J that sends x⊗ y 7→ [x]⊗k [y] where

[x] denotes the equivalence class of x in R/I and similarly for [y]. This map is surjective since for any
pure tensor [x]⊗k [y] in R/I ⊗k S/J , ϕ(x⊗k y) = [x]⊗k [y], and so surjectivity holds for any arbitrary
element of R/I ⊗k S/J . The isomorphism thus follows from that the fact that ker(ϕ) = Ie + Je.

Lemma 4.2. Let M = Ur
n be the uniform matroid, and let S1 = Z[xF |E : F ∈ FM\{∅, E}] and

S2 = Z[xE|F : F ∈ FM⊥\{∅, E}]. Then

SM,M⊥ ∼= S1 ⊗Z S2.

Proof. This immediately follows from our result in Proposition 3.1 that

BFM,M⊥ = {F |E : F ⊆ E and 1 ≤ |F | ≤ r − 1} ∪ {E|G : G ⊆ E and 1 ≤ |G| ≤ n− r − 1}
= {F |E : F ∈ FM\{∅, E}} ∪ {E|G : G ∈ FM⊥\{∅, E}}.
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Lemma 4.3. Let M = Ur
n, and suppose that S1 and S2 are defined as in the statement of Lemma

4.2. In S1, define I1 as the ideal generated by xF |ExF ′|E where F, F ′ ∈ FM\{∅, E} are incompara-
ble. Similarly, in S2, define I2 as the ideal generated by xE|GxE|G′ where G,G′ ∈ FM⊥\{∅, E} are
incomparable. Then

IM,M⊥ = (I1)
e + (I2)

e

where (Ii)
e denotes the extension of Ii along the inclusion map Si → S1 ⊗Z S2 for i = 1, 2.

Proof. We proved in Proposition 3.3 that every bichain of M is a biflag, so IM,M⊥ is generated by
xF|G where F|G is not a bichain. Thus, IM,M⊥ is equal to a Stanley-Resiner ideal I∆ where ∆ is the
simplicial complex where the vertices are biflats of M and the faces are bichains of M , and so IM,M⊥

is generated by xF |GxF ′|G′ where F |G,F ′|G′ are incomparable biflats. We examine which biflats of
M are incomparable. If F |G,F ′|G′ ∈ BFM,M⊥ are not comparable, then we have two possible cases:
The first case is F |G = F |E and F ′|G′ = F ′|E, and the second case is F |G = E|G and F ′|G′ = E|G′.
Therefore,

IM,M⊥ = I ′1 + I ′2

where I ′1 is the ideal in SM,M⊥ generated by xF |ExF ′|E where F ′, F ∈ FM\{∅, E} are incomparable,
and I ′2 is the ideal in SM,M⊥ generated by xE|GxE|G′ where G,G′ ∈ FM⊥\{∅, E} are incomparable.
It is quick to verify that

(I1)
e = I ′1, (I2)

e = I ′2

where the extension is along the inclusion maps S1 → SM,M⊥ , S2 → SM,M⊥ and so we have

IM,M⊥ = (I1)
e + (I2)

e.

Lemma 4.4. Let M = Ur
n, and suppose that S1 and S2 are defined as in the statement of Lemma 4.2.

In S1, define J1 as the ideal generated by γi − γj for any i, j ∈ E. Similarly, in S2, define J2 as the
ideal generated by γi − γj for any i, j ∈ E. Then

JM,M⊥ = (J1)
e + (J2)

e

where (Ji)
e denotes the extension of Ji along the inclusion map Si → S1 ⊗Z S2 for i = 1, 2.

Proof. We have that
JM,M⊥ = J ′

1 + J ′
2

where J ′
1 is the ideal generated by γi − γj for any i, j ∈ E and J ′

2 is the ideal generated by γi − γj for
any i, j ∈ E. It is quick to verify that

(J1)
e = J ′

1, (J2)
e = J ′

2

where the extension is along the inclusion maps S1 → SM,M⊥ , S2 → SM,M⊥ . Thus,

JM,M⊥ = (J1)
e + (J2)

e.

Proposition 4.5 (Proposition 1.5). For M = Ur
n, we have

AM,M⊥ ∼= AM ⊗Z AM⊥ .
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Proof. We have
AM,M⊥ = SM,M⊥/(IM,M⊥ + JM,M⊥)

where the definition of SM,M⊥ , IM,M⊥ , JM,M⊥ is given in Definition 2.11. Define S1, S2, I1, I2, J1, J2
as in the statements of Lemmas 4.2, 4.3 and 4.4. By these three lemmas, we get

AM,M⊥ = SM,M⊥/(IM,M⊥ + JM,M⊥)
∼= (S1 ⊗Z S2)/((I1)

e + (I2)
e + (J1)

e + (J2)
e)

∼= (S1 ⊗Z S2)/((I1 + J1)
e + (I2 + J2)

e)
∼= (S1/I1 + J1)⊗Z (S2/(I1 + J2))

where the last isomorphism holds by Lemma 4.1. Now, one can verify, through the isomorphism
xF |E 7→ xF , that

S1/(I1 + J1) ∼= SM/(IM + JM ) = AM .

Similarly, through the isomorphism xE|G 7→ xG, one can verify that

S2/(I2 + J2) ∼= SM⊥/(IM⊥ + JM⊥) = AM⊥ .

In total, we get
AM,M⊥ ∼= (S1/I1 + J1)⊗Z (S2/(I1 + J2)) ∼= AM ⊗Z AM⊥ .

Corollary 4.6 (Proposition 1.6). Let M = Ur
n. Then,

HA
M,M⊥ (t) = HAM

(t)HA
M⊥ (t).

Proof. By Proposition 4.5, we get AM,M⊥ ∼= AM ⊗Z AM⊥ . Thus, the claim follows from the multi-
plicative property of Hilbert-Poincaré series over tensor products.

Proposition 4.7 (Proposition 1.7). Let M = Ur
n. Then we have

HA
M,M⊥ (t) =

r−1∑
j=0

(
n

j

)
dj(t)(1 + t+ · · ·+ tr−1−j)

n−r−1∑
j=0

(
n

j

)
dj(t)(1 + t+ · · ·+ tn−r−1−j)

 .

Proof. This follows immediately from Corollary 4.6 and Proposition 1.3.

Proposition 4.8 (Proposition 1.8). Let M = Ur
n. Then, HA

M,M⊥ is real-rooted, γ-positive, and
unimodal.

Proof. The Hilbert-Poincaré series HA
M,M⊥ (t) is real-rooted since HA

M,M⊥ (t) = HAM
(t)HA

M⊥ (t) by

Corollary 4.6, and by Proposition [BV25], each one of HAM
(t), HA

M⊥ (t) is real-rooted. Moreover,
HA

M,M⊥ (t) is palindromic since it is the product of two palindromic polynomials HAM
(t), HA

M⊥ (t),

and hence, HA
M,M⊥ (t) is γ-positive and unimodal.

In the table below, we compute HA
M,M⊥ (t) for M = Ur

n where 1 ≤ r ≤ n − 1 and r = 2, 3, ..., 7. We
note that when M is uniform, by Corollary 4.6,

HA
M,M⊥ (t) = HAM

(t)HA
M⊥ (t) = HA

M⊥ (t)HA
(M⊥)⊥

(t) = HA
M⊥,(M⊥)⊥

(t).

Hence the value of the Hilbert-Poincare series of the conormal Chow ring of a matroid M and its dual
M⊥ is the same when M is uniform. This fact is highlighted in the left column of the table.
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Table 1: Examples of HAM
(t) for some uniform matroids M .

M HA
M,M⊥ (t)

U1
2 1

U1
3 , U

2
3 1 + t

U1
4 , U

3
4 1 + 7t+ t2

U2
4 1 + 2t+ t2

U1
5 , U

4
5 1 + 21t+ 21t2 + t3

U2
5 , U

3
5 1 + 12t+ 12t2 + t3

U1
6 , U

5
6 1 + 51t+ 16t2 + 51t3 + t4

U2
6 , U

4
6 1 + 37t+ 72t2 + 37t3 + t4

U3
6 1 + 32t+ 258t2 + 32t3 + t4

U1
7 , U

6
7 1 + 113t+ 813t2 + 813t3 + 113t4 + t5

U2
7 , U

5
7 1 + 93t+ 429t2 + 429t3 + 93t4 + t5

U3
7 , U

4
7 1 + 79t+ 1312t2 + 1312t3 + 79t4 + t5

5 Uniqueness of the Uniform Case Method

The proof of Proposition 1.5 crucially relies on Propositions 3.1 and 3.3, so one might hope if the latter
two propositions holds true in the case of any other matroids. Namely, we would like to investigate if
there are any non-uniform matroids M such that

BFM,M⊥ = {F |E : F ∈ FM\{∅, E}} ∪ {E|G : G ∈ FM⊥\{∅, E}},

or if there any non-uniform matroids M such that every bichain is a biflag. If a matroid M exists such
that these two properties are satisfied, then one can imitate the proofs of Lemmas 4.2, 4.3, 4.4 and
Proposition 4.5 that we described in Section 4 to prove that AM,M⊥ ∼= AM ⊗Z AM⊥ . In the following
discussion, we prove that these two properties are only true in the case of uniform matroids.

Proposition 5.1. Suppose that M is a loopless and coloopless matroid such that

BFM,M⊥ = {F |E : F ∈ FM\{∅, E}} ∪ {E|G : G ∈ FM⊥\{∅, E}}.

Then, M is uniform.

Proof. We can follow the same steps of the proof of Lemma 3.2 to deduce that

F|G = F1|E ≤ F2|E ≤ · · · ≤ Fj−1|E ≤ E|Gj ≤ E|Gj+1 ≤ · · · ≤ E|Gn.

Then the claim follows from [NP24].

Lemma 5.2. Let F be a proper flat of a loopless and coloopless matroid M such that rank(M) ≤ |F |.
Then, rank(F\{x}) = rank(F ) for any x ∈ F .

Proof. We first observe that rank(F ) < rank(M). To see why, suppose that rank(M) ≤ rank(F ).
Since F is proper, there exists some x ∈ E\F . By F being a flat, we get rank(M) ≤ rank(F ) <
rank(F ∪{x}), contradicting the definition of the rank of a matroid. Thus, rank(F ) < rank(M) ≤ |F |,
and so F is dependent. Now let x ∈ F . By properties of the rank function, we have rank(F ) − 1 ≤
rank(F\{x}) ≤ rank(F ) so we either have rank(F\{x}) = rank(F ) − 1 or rank(F\{x}) = rank(F ).
Towards a contradiction, assume rank(F\{x}) = rank(F ) − 1 is true. We take two cases, and show
that both lead to a contradiction. Assume first that F\{x} is independent. Then rank(F ) − 1 =
rank(F\{x}) = |F\{x}| = |F | − 1, implying that rank(F ) = |F |, a contradiction. Now assume
that F\{x} is dependent. We show that x is a coloop by proving that for any independent subset
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I, I ∪ {x} is independent. For any independent subset I in F\{x}, I ∪ {x} is independent since
rank(F\{x}) < rank(F ). Otherwise, for any independent subset I not contained in F\{x}, then
I ∪ {x} is independent since I contains at least one element not in the closure of F , and hence
rank(I ∪ {x}) > rank(I). Thus, we have a contradiction since we assumed that M is coloopless.
Therefore, it must be the case that rank(F\{x}) = rank(F ) as desired.

Lemma 5.3. Let M be a non-uniform matroid. Then there exists a nonempty proper flat F of M
such that rank(M) ≤ |F |.

Proof. Since M is not uniform, then not every flat is independent and hence there exists some depen-
dent flat F . The flat F is contained in some hyperplane H that is also dependent as it contains a
dependent set. Thus, |H| > rank(H) = rank(M)− 1 so |H| ≥ rank(M), as desired.

Proposition 5.4. Suppose that M is a loopless and coloopless matroid (with a ground set E) such
that every bichain is a biflag. Then, M is uniform.

Proof. We prove the contrapositive. Suppose that M is a non-uniform matroid with size n and rank
r. Then, by Lemma 5.3, there is a nonempty proper flat F of M such that rank(M) ≤ |F |. We claim
that E\F is a flat of M⊥, and prove it by showing the addition of a new element to E\F strictly
increases its rank in M⊥. For ease of notation, we use Ac to denote the complement of any set A in
the set E, and r, r∗ to denote the rank functions of M,M⊥, respectively. Let x ∈ (F c)c = F . From
matroid duality, we have

r∗(F c ∪ {x}) = r((F c ∪ {x})c) + |F c ∪ {x}| − r(E)

= r(F ∩ {x}c) + |F c|+ 1− r(E)

= r(F\{x}) + |F c|+ 1− r(E).

By Lemma 5.2, we have r(F )− 1 < r(F\{x}), implying

r(F\{x}) + |F c|+ 1− r(E) > r(F )− 1 + |F c|+ 1− r(E)

= r((F c)c) + |F c| − r(E)

= r∗(F c).

This proves that F c is a flat of M⊥, which is nonempty and proper since F is nonempty and proper.
Now consider the bichain F|G = F |E ≤ E|F c. We have that⋂

F |G∈F|G

F ∩G = (F ∩ E) ∪ (E ∪ F c) = F ∪ F c = E,

so F|G is not a biflag, as desired.

6 Further Research Questions

6.1 Palindromicity, Real-Rootedness, γ-Positivity and Unimodality

When M is uniform, we found an explicit formula for the Hilbert-Poincaré series HA
M,M⊥ (t), and

proved that it is palindromic, real-rooted, γ-positive and unimodal. It would be interesting to in-
vestigate if HA

M,M⊥ (t) is real-rooted or unimodal for any other classes of matroids or for arbitrary
loopless and coloopless matroids. Furthermore, by Proposition 6.1 below, the Hilbert-Poincaré series
HA

M,M⊥ (t) is palindromic for any arbitrary loopless and coloopless matriod M , so it would be an in-

teresting question to investigate if HA
M,M⊥ (t) is γ-positive for other classes of matroids or for arbitrary

loopless and coloopless matroids.
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Proposition 6.1. The Hilbert-Poincaré series HA
M,M⊥ (t) is palindromic for any arbitrary matroid

M

Proof. By [AHK18], the conormal fan A(ΣM,M⊥) is Lefschetz. This implies that it is also hard Lef-
schetz, and so HA

M,M⊥ (t) is palindromic. For the definitions of Lefschetz and hard Lefschetz, we refer

the reader to [ADH23].

Based on the values of HA
M,M⊥ (t) we compute in the table below, our guess is that HA

M,M⊥ is always
real-rooted.

Table 2: The values HA
M,M⊥ (t) for some loopless and coloopless matroids M of size 6 and 7. See

Appendix for the definitions of the Mi’s.

M HA
M,M⊥ (t) Real-rooted?

M1 1 + 32t1 + 258t2 + 32t3 + t4 ✓
M2 1 + 29t1 + 200t2 + 29t3 + t4 ✓
M3 1 + 26t1 + 150t2 + 26t3 + t4 ✓
M4 1 + 26t1 + 150t2 + 26t3 + t4 ✓
M5 1 + 23t1 + 108t2 + 23t3 + t4 ✓
M6 1 + 20t1 + 74t2 + 20t3 + t4 ✓
M7 1 + 75t1 + 1143t2 + 1143t3 ++75t4 + t5 ✓
M8 1 + 71t1 + 986t2 + 986t3 ++71t4 + t5 ✓

6.2 Relationship between AM,M⊥ and AM ⊗Z AM⊥

It would also be interesting to study the relationship between AM,M⊥ and AM ⊗Z AM⊥ in the non-
uniform case. As we proved in Proposition 4.5, the two graded rings are isomorphic if M is uniform.
In the more general case, when M is an arbitrary loopless and coloopless matroid, we have morphisms
of fans π : ΣM,M⊥ → ΣM and π : ΣM,M⊥ → ΣM⊥ [ADH23]. Consequently, we have a morphism
of fans σ : ΣM,M → ΣM × ΣM⊥ giving us a pull-back map σ∗ : AM ⊗Z AM⊥ → AM,M⊥ since
AM ⊗Z AM⊥ ∼= A(ΣM × ΣM⊥). Proposition 3.20 of [ADH23] provides us with the following simple
description of σ∗: for flags F ,G of nonempty proper flats of of M,M⊥, respectively,

σ∗(xF ⊗Z 1) =
∑
A

xF|A, σ∗(1⊗Z xG) =
∑
B

xB|G

where the sum in the left equality is over all decreasing sequences A such that F|A is a biflag of M ,
and the sum in the right equality is over all increasing sequences B such that B|G is a biflag of M .
It would be of interest to study the kernel and the image of this map in hope of learning more about
AM,M⊥ .

6.3 Non-Dominance of Uniform Matroids

In [Fer+24], the following proposition is proven regrading the coefficients of the Hilbert series of the
Chow ring of an arbitrary matroid:

Proposition 6.2. Let M be a matroid of rank r and a ground set of size n. Then

HAM
(t) ⪯ HAUr

n
(t)

where ⪯ denotes that the former polynomial is less than the latter polynomial coefficient-wise.
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It is, then, natural to ask whether something similar holds for HA
M,M⊥ (t) where M is arbitrary.

Explicitly, we are asking if for any matroid M of size n and rank r, we have

HA
M,M⊥ (t) ⪯ HA

Ur
n,U

n−r
n

(t). (2)

We provide a counterexample. Let M be the matroid with ground set E = {1, 2, 3, 4} and basis
B = {{1, 2}, {2, 3}, {1, 3}, {2, 4}, {1, 4}}. We have that n = 4, r = 2, and one can explicitly compute
that

HA
M,M⊥ (t) = 1 + 3t+ t2.

Based on Corollary 4.7, we have that

HA
Ur
n,U

n−r
n

(t) = 1 + 2t+ t2.

It would be interesting to investigate if there special families of matroids M such that (2) holds true.

7 Appendix

Table 3: Bases of the matroids Mi in Table 2.

M Bases(M)

M1 {0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 2, 3}, {4, 0, 1}, {4, 0, 2}, {4, 1, 2}, {4, 0, 3}, {4, 1, 3}, {4, 2, 3}, {0, 5, 1},
{0, 5, 2},{5, 1, 2}, {0, 5, 3}, {5, 1, 3}, {5, 2, 3}, {4, 0, 5}, {4, 5, 1}, {4, 5, 2}, {4, 5, 3}

M2 {0, 1, 3}, {0, 2, 3}, {1, 2, 3}, {4, 0, 1}, {4, 0, 2}, {4, 1, 2}, {4, 0, 3}, {4, 1, 3}, {4, 2, 3}, {0, 5, 1}, {0, 5, 2},
{5, 1, 2}, {0, 5, 3}, {5, 1, 3}, {5, 2, 3}, {4, 0, 5}, {4, 5, 1}, {4, 5, 2}, {4, 5, 3}

M3 {0, 1, 3}, {0, 2, 3}, {1, 2, 3}, {4, 0, 1}, {4, 0, 2}, {4, 1, 2}, {4, 0, 3}, {4, 1, 3}, {4, 2, 3}, {0, 5, 1}, {0, 5, 2},
{5, 1, 2}, {0, 5, 3}, {5, 1, 3}, {5, 2, 3}, {4, 0, 5}, {4, 5, 1}, {4, 5, 2}

M4 {0, 1, 3}, {0, 2, 3}, {1, 2, 3}, {4, 0, 1}, {4, 0, 2}, {4, 1, 2}, {4, 1, 3}, {4, 2, 3}, {0, 5, 1}, {0, 5, 2}, {5, 1, 2},
{0, 5, 3}, {5, 1, 3}, {5, 2, 3}, {4, 0, 5}, {4, 5, 1}, {4, 5, 2}, {4, 5, 3}

M5 {0, 1, 3}, {0, 2, 3}, {1, 2, 3}, {4, 0, 1}, {4, 0, 2}, {4, 1, 2}, {4, 1, 3}, {4, 2, 3}, {0, 5, 1}, {0, 5, 2}, {5, 1, 2},
{0, 5, 3}, {5, 2, 3}, {4, 0, 5}, {4, 5, 1}, {4, 5, 2}, {4, 5, 3}

M6 {0, 1, 3}, {0, 2, 3}, {1, 2, 3}, {4, 0, 1}, {4, 0, 2}, {4, 1, 2}, {4, 1, 3}, {4, 2, 3}, {0, 5, 1}, {0, 5, 2}, {5, 1, 2},
{0, 5, 3}, {5, 2, 3}, {4, 0, 5}, {4, 5, 1}, {4, 5, 3}

M7 {0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 2, 3}, {4, 0, 1}, {4, 0, 2}, {4, 1, 2}, {4, 0, 3}, {4, 1, 3}, {4, 2, 3}, {0, 5, 1},
{0, 5, 2}, {5, 1, 2}, {0, 5, 3}, {5, 1, 3}, {5, 2, 3}, {4, 0, 5}, {4, 5, 1}, {4, 5, 2}, {4, 5, 3}, {0, 1, 6},
{0, 6, 2}, {1, 6, 2}, {0, 6, 3}, {1, 6, 3}, {6, 2, 3}, {4, 0, 6}, {4, 1, 6}, {4, 6, 2}, {4, 6, 3}, {0, 5, 6},
{5, 1, 6}, {5, 6, 2}, {5, 6, 3}, {4, 5, 6}

M8 {0, 1, 3}, {0, 2, 3}, {1, 2, 3}, {4, 0, 1}, {4, 0, 2}, {4, 1, 2}, {4, 0, 3}, {4, 1, 3}, {4, 2, 3}, {0, 5, 1}, {0, 5, 2},
{5, 1, 2}, {0, 5, 3}, {5, 1, 3}, {5, 2, 3}, {4, 0, 5}, {4, 5, 1}, {4, 5, 2}, {0, 1, 6}, {0, 6, 2}, {1, 6, 2},
{0, 6, 3}, {1, 6, 3}, {6, 2, 3}, {4, 0, 6}, {4, 1, 6}, {4, 6, 2}, {4, 6, 3}, {0, 5, 6}, {5, 1, 6}, {5, 6, 2},
{5, 6, 3}, {4, 5, 6}
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[Brä15] Petter Brändén. “Unimodality, log-concavity, real-rootedness and beyond”. In: Handbook of
enumerative combinatorics. Discrete Math. Appl. (Boca Raton). CRC Press, Boca Raton,
FL, 2015, pp. 437–483. isbn: 978-1-4822-2085-8.
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