
Open Systems for the Working Mathematician

Owen Lynch

April 29, 2020

Contents

1 Introduction 2
1.1 The Purpose of this Review 2
1.2 What is a System? . 2
1.3 What is an Open System? . 4

2 Material 6
2.1 Decorated Graphs . 6
2.2 Chemical Reactions . 6
2.3 Linear Algebra . 8

3 Monoidal Categories 8
3.1 Overview . 8
3.2 Monoidal Functors . 11
3.3 Symmetric Monoidal Categories 11
3.4 Petri Nets as Presentations of SSMCs 12

4 String Diagrams 13
4.1 String Diagrams as Dual to Commutative Diagrams 13
4.2 String Diagrams as Histories 14
4.3 String Diagrams As Circuits 17
4.4 The Braid Category . 18
4.5 Linear Algebra in String Diagrams 20

5 Cospans 25
5.1 Basic Cospans . 25
5.2 Structured Cospans . 27
5.3 Categories of Open Systems 28
5.4 Corelations . 29

1

6 Semantic Functors 29
6.1 Steady State Solutions for Resistor Networks 30
6.2 Open Dynamical Systems . 31
6.3 Rate Equation for Petri Nets 34

1 Introduction

1.1 The Purpose of this Review

In this review, we attempt to collect and summarize recent work that has been
happening across the field of applied category theory around open systems.
There is a good deal of work put into making open systems accessible to the
scientist who was previously unfamiliar with categories. Therefore, in order
to make an original contribution, in this review we attempt to make open
systems accessible to the category theorist who was previously unfamiliar
with science.

This review is organized in a grid fashion. In the second section, we will
introduce three application domains for the later study of theory. In each
subsequent section, when we introduce a new concept we will talk about how
that subject interfaces with all three application domains. Our hope is that
this will congeal the concepts presented, and make it more clear how they tie
together.

Before we dive into the math, however, we need to talk about what open
systems mean philosophically, and before we do that, we need to talk about
systems.

1.2 What is a System?

This has an easy answer: a system is an object whose class of behaviors we
want to study. This seems unsatisfying, but from a mathematical perspective
what this is saying is that “system” is a term left undefined, like “point” or
“line”. We will develop a theory around “systems” that gives them meaning
from context (though this theory will not be nearly as rigorous as Euclidean
geometry).

We can apply various adjectives to “system” that narrow the type of
behavior associated with a system. For instance, one large class of systems
is “dynamical systems”. Dynamical systems are characterized by a focus on
evolving a system over time. Typically, this is done by means of differential
equations.

2

Example 1. Consider the cylinder S1 × R, which we use to represent the
possible position, velocity pairs of a pendulum. Let (θ, θ̇) be coordinates
for the cylinder. Then the evolution of (θ, θ̇) is governed by the differential
equations

∂

∂t
θ̇ = cos(θ)

∂

∂t
θ = θ̇

These differential equations are a presentation of a section of the tangent bun-
dle of S1 ×R. We use this section to generate a 1-parameter diffeomorphism
group acting on S1 ×R.

There are more adjectives that we can use to describe the system above:
it is continuous time, and it is deterministic. Its state space is S1 ×R, and
its time axis is R. Mechanics is the study of continuous time, deterministic
dynamical systems.

In general, a dynamical system will have a 1-parameter monoid acting on
it. This monoid will typically be R≥0 or N, but it could be R or Z. That
is, if BM is a category with one object and morphisms given by elements of
M , and C is some category like the category of manifolds, or the category
of metric spaces, or the category of vector spaces, then the formal object
corresponding to an evolution of c ∈ C is a functor from BM to C that sends
the one object of BT to c.

Example 2. Consider a matrix T ∈ RZ×Z defined by Ti,i+1 = 0.5, Ti,i−1 = 0.5,
Ti,j = 0 otherwise. Then we define an action of N on ∆Z, the space of
probability distributions on the integers, by k 7→ T k. This represents a
random walk on the set of integers. If p ∈ ∆Z is a probability distribution
over Z, then T kp is the probability distribution of the state of the random
walker after k steps, if the state of the random walker was originally distributed
as p.

This is a discrete time, stochastic dynamical system. Its state space is Z,
and its time axis is N. Note that one could also look at this as a deterministic
system with state space ∆Z (the set of probability distributions over Z); in
general a stochastic system can also be viewed as a deterministic system
where the state space is the set of probability distributions over the original
state space. The difference is the approach: the study of stochastic systems
uses methods of probability theory because we typically care about questions
about our systems that have probabilisitc answers.

There are also static systems, which can be viewed as special cases of
dynamical systems that don’t evolve over time. A dynamical system with

3

arbitrary time axis A and state space E can be viewed as a static system
with state space EA.

Example 3. Consider a diagram in Set of the form

R≥0 E Vρ

s

t

This is a decorated graph: a graph where each edge e ∈ E has an associated
real number ρ(e). E and V are sets of edges and vertices, respectively, and
s and t are the source and target maps. We interpret this system as an
electronic circuit with resistances ρ(e), and a behavior in this system as an
assignment of a voltage to each vertex that satisfy certain physical laws which
we will discuss later. However, it could also model biological diffusion across
membranes, if we replace electric potential with chemical potential [Sch81].

Static systems also come up as so-called steady state solutions for dynam-
ical systems, which are fixed points of the evolution. The previous example
is actually the steady state solutions for a dynamical system which would
evolve the currents and voltages through time.

What the reader should keep in mind, therefore, is that these adjectives
(dynamical, static, stochastic, deterministic) and nouns (state space, time axis,
system, behavior) are not mathematical terms. Rather, they are useful for
communicating an approach to mathematically modeling some phenomena.

1.3 What is an Open System?

Similarly, “open system” is not a mathematical term. An open system is
a system that has a “boundary” along which it can be influenced by an
un-modeled environment (i.e., we know how the system responds to the
environment, but we don’t know what the environment is doing).

Example 4. As an extension of Example 3, consider a diagram of the form

B

R≥0 E V

b

ρ

s

t

The way we talk about the behaviors associated to this system is different
than in the previous systems; we say that given a behavior of the boundary
(i.e., the system restricted to B), there are a collection of behaviors compatible
with that behavior. At the boundary, the physical laws that held earlier no
longer need to hold, because energy can flow in or out to maintain equilibrium.

4

There also may be no system behavior compatible with a boundary behavior,
and we interpret this as the system enforcing a constraint on its boundary.

Example 5. Consider the same pendulum system, but now with an additional
term added to the differential equation

∂

∂t
θ̇ = cos(θ) + F (t)

∂

∂t
θ = θ̇

This additional term represents an external force. We still end up with a
evolution through time, but now it takes a slightly different form. That is,
we care not just about the total time that the system has evolved for, but
also the starting and ending time. Therefore, our “action” is a functor from
R viewed as a poset: any morphism t −→ t′ gives a diffeomorphism from the
cylinder to itself.

Example 6. Any closed system is an open system with empty boundary.

Just as a drunk searches for his keys under a lamp post because that’s
where he can see, scientists have concentrated on systems whose behavior
can be studied in isolation, i.e. systems without boundary. This is because it
is easier to make and test hypotheses when one does not have to worry about
unmodeled interactions with the environment.

Classically, when systems that we want to model are open systems in the
real world, we get around their dependence on the environment by either
neglecting it, or adding more parts of the environment to the model. And
in fact, when we are only concerned about one system, this is desirable: we
want to ask questions about a single system, so we add everything we know
about that system in order to get the best picture possible.

However, when we explicitly model the environment to create a closed
system, we lose the ability to compose the model that we have made with other
models of the environment. This is the key feature of open systems: open
systems are most naturally discussed in a compositional framework where
one can “glue” two open systems together along a part of their boundary.

In short, just as dynamical systems are distinguished by an approach that
cares about time evolution, and stochastic systems are distinguished by an
approach that cares about nondeterminism, open systems are distinguished
by an approach that cares about compositionality. And that is where the
category theory comes in.

5

2 Material

Here we introduce three examples that will run through this paper and
illustrate each of the tools that we build. We will not be able to explain these
examples thoroughly now, because we don’t have the right tools with which
to do so. However, keeping these examples in mind as we run through the
different tools for open systems will be useful.

2.1 Decorated Graphs

Fix a set D, which we will call the set of decorations. Then a decorated graph
with decorations D is a diagram in Set of the form

D E Vd s

t

The elements of E are called “edges”, and the elements of V are called
“vertices”. Note that this definition of graph allows for self-edges and multiple
edges, and edges are directed with a “source” s(e) and “target” t(e).

Each edge has an associated “decoration” d(e), which is an element of D.
Example 7. A social network is a decorated graph. The set of decorations is
the set of labels for relationships between two people, for instance “parent”,
“friend”, “boss”, “priest”, “doctor”, etc. Edges from a vertex to itself make
sense in this context because someone could be their own boss, or their own
doctor. Additionally, two people could have several relationships with each
other, so there could be several edges between two vertices.

To build the category of decorated graphs over the decoration set D, let
C be the following category:

d e nδ

τ

σ

Then take the subcategory of SetC
op

where the objects are F such that
F (d) = D and the arrows are α such that αδ = 1D.

2.2 Chemical Reactions

Fix a finite set S, which we call the set of species. Then we call C = NS the
set of complexes on S: a complex is an assignment of a natural number to
each species. A reaction is an element r of C × C: we call π1(c) the input
and π2(c) the output.

A Petri net is nothing more than a set of reactions.

6

H2

O2

H2O

Figure 1: A Petri net for making water.

R WPB D

Figure 2: A Petri net describing predator-prey interaction.

Example 8. Let S = {H2,O2,H2O}. Then

2H2 + O2 −→ 2H2O

is a reaction written down in the language of chemistry. We invite the reader
to take a moment and think about how to parse this formula into the fomalism
above.

Example 9. Let S = {W,R}. In this case, W and R do not stand in for
molecules; they stand in for wolves and rabbits. Then a standard predator
prey model can be expressed as

R + W −→ 2W
R −→ 2R
W −→

The first “reaction” represents predation and wolf reproduction. The as-
sumption is that one rabbit is converted into one wolf, catalyzed by a wolf
which “eats” the rabbit and “gives birth” to the new wolf. The second reac-
tion is rabbit reproduction, in this case asexual: one rabbit splits into two
rabbits. Finally, wolves occasionally die spontaneously. This is obviously a
simplification, but even so this model can capture real population dynamics.

There is a neat diagram that one can associate to a Petri net, which one
can see in Figure 1 and Figure 2. The blue circles correspond to species,
and the grey squares correspond to reactions. For each input to a reaction,
there is an arrow coming from the corresponding species circle to the reaction

7

square, and for each output from a reaction, there is an arrow going from the
reaction to the corresponding species.

A morphism of Petri nets is exactly like a graph morphism. That is,
if (Sk, Rk, sk : Rk −→ N

Sk , tk : Rk −→ N
Sk), k ∈ {1, 2} are two Petri nets,

then a morphism between them is a function fS : S1 −→ S2 and a function
fR : R1 −→ R2 that commutes with source and target. If the Petri net is
decorated with rates, then we require that fR also preserves rates.

2.3 Linear Algebra

The reader should be familiar with Veck, the category of vector spaces over a
field k. What might be less familiar is the the category of linear relations over
a field k, which we call LinRelk. The objects in this category are vector spaces
over k, and a morphism between U and V is a linear subspace R ⊆ U × V ,
which is interpreted as a relation in a standard way. Then to compose
R ⊆ U × V and S ⊆ V ×W , we define S ◦R by

{(u,w) ∈ U ×W | ∃v ∈ V such that (u, v) ∈ R and (v, w) ∈ S}.

We care about LinRelk because it is a convenient and simple category for the
behavior of open systems. An open system doesn’t have inputs and outputs
in a traditional sense: rather it enforces constraints between different parts
of its boundary.

For instance, an electronic circuit enforces a relationship between the
voltages of different nodes in the circuit. A Petri net enforces a relationship
between the quantities of different substances.

From a mathematical perspective as well, LinRelk has an interesting
algebraic presentation, which we will discuss later on.

3 Monoidal Categories

3.1 Overview

We will eventually compose systems by gluing them along part of their
boundary. However, before we do this, we first study composing systems
by just juxtaposing them and not worrying about the glue yet. The correct
structure for this sort of composition is a monoidal category.

Recall that a monoid can be viewed as a category with only one object.
Classically, we don’t think about the single object, and we just think of the
monoid as a set with an associative binary operation that has a unit. However,
this definition as a one object 1-category is useful, because it makes monoidal

8

categories a natural generalization: a monoidal category is a 2-category with
only one object. Classically, we think of a monoidal category as a 1-category
that has a binary operation on it satisfying certain laws about its interaction
with the arrows of the category. These laws are much easier to remember,
and are more naturally derived, however, if one simply thinks of the monoidal
category as a 2-category with only one object.

For the reader who has only passing familiarity with 2-categories, we will
do a brief review. A 2-category is composed of objects A,B, 1-morphisms
f, g : A −→ B, and 2-morphisms α : f ⇒ g, that satisfy the following.

1. Hom(A,B) is a 1-category for any objects A,B, with objects the 1-
morphisms and arrows the 2-morphisms.

2. For all objectsA,B,C, we have a functor ◦ : Hom(A,B)×Hom(B,C) −→
Hom(A,C) such that:

(a) (− ◦ −) ◦ − and − ◦ (− ◦ −) are naturally isomorphic, and this
natural isomorphism respects the Maclane pentagon identity.

(b) For every A, there exists 1A ∈ Hom(A,A) such that 1A ◦ −
is naturally isomorphic to 1Hom(B,A), and − ◦ 1A is naturally
isomorphic to 1Hom(A,B) for all B.

We call a 2-category strict if the natural isomorphisms in 2a and 2b
are equalities, and weak otherwise. It is an important theorem that any
2-category is equivalent to a strict 2-category if we take the right notion
of equivalence of 2-categories. This means that we don’t really have to
worry about the difference between strict 2-categories and weak 2-categories.
However, it is important to get in the habit of worrying about strict vs. weak,
because it will be important for some structures later on.

Example 10. The category of categories and functors, Cat, has a natural
2-category structure given by adding natural transformations as 2-morphisms.
This is a strict 2-category.

A 2-category with one object, ∗, is comprised of a 1-category Hom(∗, ∗)
along with an associative and unital binary operation, ◦ : Hom(∗, ∗) ×
Hom(∗, ∗) −→ Hom(∗, ∗). Normally in this case, we call this operation ⊗
instead of ◦, and reserve ◦ for composition of morphisms in Hom(∗, ∗). We
also typically call the identity element I.

Example 11. In the above 2-category, take the subcategory with single object

9

FinSet, 1-morphisms generated by the basepoint functor,

F : FinSet −→ FinSet

A 7→ A t {∗}

and 2-morphisms being all natural transformations α : Fn ⇒ Fm. If we
think about this as a 1-category with a binary operation, this is a skeleton of
FinSet with the binary operation of disjoint union, i.e. the set of objects is
isomorphic to N, and the binary operation is + with unit 0. This is a very
important monoidal category; we will call it (F ,+, 0).

One part of the definition of a monoidal category that is important to
emphasize is the ability to compose morphisms sideways as well as vertically.
That is, if (C,⊗, I) is a monoidal category, then we can compose morphisms
as illustrated in the following diagram.

a b a⊗ b

⇒

c d c⊗ d

f g f⊗g

Holding with the general idea in category theory that the morphisms
are more interesting than the objects, it is this structure on the arrows in a
monoidal category that makes monoidal categories interesting.
Example 12. Let C be a category with products and terminal objects. Then
if we let ⊗ be the product and I be the terminal object, it can be shown that
(C,⊗, I) is a monoidal category. Similarly, we can do this with sums and the
initial object.
Example 13. If R is a commutative ring, then (ModR,⊗R, R) is a monoidal
category, where ⊗ is the normal tensor product.
Example 14. The category of decorated graphs has coproducts (disjoint union
of nodes and edges), and initial object (the empty graph), and we customarily
use the monoidal category structure given by this.
Example 15. Veck can be viewed as a monoidal category (Veck,⊗, k) using the
tensor product of vector spaces, or it can be viewed as a monoidal categegory
(Veck,⊕, 0) using direct product. This second monoidal category structure
also works for LinRelk, as given R1 ⊆ V1 ×W1 and R2 ⊆ V2 ×W2, we can
construct

R1 ×R2 ⊆ (V1 ×W1)× (V2 ×W2) ∼= (V1 × V2)× (W1 ×W2)

10

3.2 Monoidal Functors

The naive way to define a monoidal functor between (C,⊗, I) and (D,�, J)
is to say that a monoidal functor is an ordinary functor F where

F (c1 ⊗ c2) = F (c1) � F (c2)

F (I) = J

However, this is too restrictive (this is what we call a strict monoidal functor).
A more permissive way to define a monoidal functor is to require that
F (c1⊗ c2) ∼= F (c1)�F (c2) and that F (I) ∼= J , and that these isomorphisms
satisfy some coherence conditions. This is the restriction of the notion of a
pseudofunctor between 2-categories, and is called a weak monoidal functor;
to learn the details of the coherence conditions for pseudofunctors, we refer
the reader to [Lei03].

It is important to note that while all 2-categories are equivalent to strict
2-categories, not all monoidal functors are equivalent to strict monoidal
functors.

3.3 Symmetric Monoidal Categories

Another example of when weakness is or isn’t important is when we try to
make an analogue of commutative monoids. If we require that a⊗ b = b⊗ a,
not many categories satisfy this condition. Categories which do, we call “strict
symmetric monoidal categories”.

However, the requirement that (a, b) 7→ a ⊗ b and (a, b) 7→ b ⊗ a are
naturally isomorphic functors is much less restrictive, and is satisfied by many
important monoidal categories. In fact, this is the case for all of the examples
we have given up to now. When this is true, we call the category a braided
monoidal category, and we call the natural isomorphism the braiding. We will
see why this is a natural term and give an example later.

But that condition by itself is too loose. If αa,b : a ⊗ b −→ b ⊗ a are the
components of the natural isomorphism, then we want it to be the case
that αa,b is just “swapping” a and b, and if we swap them back with αb,a we
should end up in the same place we started with. That is, α · α, where · is
composition of natural transformations, should be the identity. This is not
always true, but when it is true, we call the category a symmetric monoidal
category.

Most of the categories that we expect the reader to be familiar with fall
into this designation. For instance, all of the categories with a monoidal
operation defined by product or coproduct are symmetric monoidal, and

11

the categories with a tensor product that is adjoint to the Hom functor
are symmetric monoidal. We will use the symmetric monoidal structure of
coproduct on the category of Petri nets and the category of electronic circuits.

3.4 Petri Nets as Presentations of SSMCs

Not only does that category of Petri nets have a symmetric monoidal struc-
ture, but also an individual Petri net can be viewed as generating a (strict)
symmetric monoidal category.

Recall that for any graph, we can make the “free category” on that graph.
This construction is the left adjoint to the “forgetful functor” that takes
a category to its underlying graph. Similarly, there is a functor from the
category of strict symmetric monoidal categories to the category of monoidal
graphs (the category of graphs with a monoid structure on the nodes). This
functor also has a left adjoint, which sends a monoidal graph to the free strict
symmetric monoidal category generated by edges in that graph.

Just like in the construction of a free category, the objects of the free strict
symmetric monoidal category are the same as the vertices of the monoidal
graph. However, a morphism in this category is more complicated. This is
because there are two ways of composing morphism in a monoidal category:
by tensor product, and by normal composition. The morphisms in the free
strict symmetric monoidal category are freely generated by both of these
operations.

A Petri net can naturally be seen as a monoidal graph: the objects are the
set of complexes, NS , and the arrows are the reactions. Even better: there is
a functor from the category of Petri nets to the category of monoidal graphs.
We can compose this functor with the functor from monoidal graphs to strict
symmetric monoidal categories, and we end up with a functor assigining a
strict symmetric monoidal category to each Petri net. In this symmetric
monoidal category, we interpret a morphism from one complex to another
complex as a sequence of reactions. Each reaction applies to a subcomplex,
and replaces that subcomplex with the result of that reaction. In this category,
we say that the reaction generate the morphisms.

Note that this is not a full embedding. There are more morphisms in the
category of strict symmetric monoidal categories. For instance, a morphism
could collapse a series of reactions to a single reaction, or expand a single
reaction to several reactions, neither of which are possible in the category
of Petri networks. This allows one to potentially simplify a Petri net while
maintaining essential properties. For more information, see [BC18].

We would give an example, however we do not yet have the right notation

12

to make this intuitive. Monoidal categories are confusing because there are
two dimensions of composition: there is ordinary morpism composition f ◦ g
and there is “sideways” morphism composition f ⊗ g. In order to fully make
sense of this, we need new notation that captures these two dimensions, and
that brings us to our next section.

4 String Diagrams

In this section, we will present a new notation for working with monoidal
categories (and more generally, 2-categories), and we will give several inter-
pretations of this notation in order help the reader develop an intuition for
it and a facility for its use. The emphasis will be on notation rather than
category theory. We will finish with a presentation of the category of linear
relations using string diagrams.

4.1 String Diagrams as Dual to Commutative Diagrams

In typical commutative diagrams, we draw objects as dots, 1-morphisms as
lines, and 2-morphisms as regions. In the language of cell complexes, objects
are 0-cells, 1-morphisms are 1-cells, and 2-morphisms are 2-cells. Classically,
this looks something like:

A B

f

g

α

where we imagine that α is a region filling in the space between f and g.
This same diagram in string diagram notation would look like:

Often string diagrams are labelled with colors rather than symbols, but
this is merely an aesthetic change. The main difference is that what was a
k-cell in the previous diagram is now a (2− k)-cell. A student of topology
will recognize this as Poincaré duality.

The commutative diagram had 0-cells A and B; the string diagram has
corresponding orange and green 2-cells. The commutative diagram had 1-cells
f and g, and the string diagram has corresponding blue and red 1-cells which

13

are perpendicular to the f and g in the commutative diagram. Finally, α,
the one 2-cell in the original diagram, has become a 0-cell.

In the case of a monoidal category, there is only one object, so we may
leave the regions blank, and this is how we will write string diagrams for the
rest of this survey. We have introduced string diagrams in the more general
context of 2-categories in order to firmly disassociate 0-cells and objects in
the reader’s mind; we have found that this is the hardest thing to explain
about string diagrams.

One last thing we will note: we are not at all consistent in how we draw
string diagrams; each section will have a slightly different style. This is
for two reasons. The first is that “in the wild” there are many styles of
string diagram, and it is important to recognize the commonalities and basic
structure between them. The second reason is that there are aspects of string
diagrams that are better captured by one style than others.

4.2 String Diagrams as Histories

In the context of Petri nets there is another way of interpreting a string
diagram. Recall that a Petri net is a presentation for a strict, symmetric
monoidal category. Each object in this monoidal category (i.e., 1-morphism in
a 2-category with one object) is a complex, and each arrow (i.e. 2-morphism) is
a sequence of reactions. A string diagram is a way of displaying a composition
of 2-morphisms, so in this context a string diagram is a way of displaying
several reactions in sequence.

Before we go any farther, the reader is invited to look at Figure 3 and
imagine how it might represent a sequence of reactions, if the green is H2,
the red is O2, the blue is H2O, the black dot is the reaction

2H2 + O2 2H2O

and the white dot is the reverse reaction.
The way we advise the reader to interpret such a diagram is as a time

history, flowing from bottom to top. Each horizontal slice of the diagram
corresponds to the state of the system at a point in time. This view is
pictured in Figure 4.

For instance, slicing the diagram at the very bottom gives four green
threads and 2 red threads, which corresponds to the complex 4H2 + 2O2.
Then, as we move through time, reactions happen at distinct points, and

14

Figure 3: Water Formation

Figure 4: Sliced Water Formation

change the complex.1 The sequence of reactions is

4H2 + 2O2 2H2 + O2 + 2H2O 4H2O 2H2 + O2 + 2H2O

The reader may object that we are not worrying about the order in which the
reactants are listed. This is because earlier we defined the monoidal category
associated with a Petri net to be strictly symmetric, so that H2 + O2 =
O2 + H2. In the following section, this will not be true.

Now, the most important part of category theory is composition, and it is
in composition where string diagrams start to really shine. We noted earlier
that it is hard to keep straight the two different types of composition in a
monoidal category, that is f ⊗g and f ◦g. String diagrams solve this problem
very neatly. To tensor together two morphisms f and g, we simply put the
two diagrams that represent them side by side.

In the “time-history” interpretation, horizontal composition signifies two
time histories happening in parallel, not affecting each other. Normal com-

1For the reader who has experience with Morse theory, the idea that the complex stays
the same except for at “critical points” should be familiar.

15

a c

b d

f g

a⊗ c

b⊗ d

f ⊗ g =

position is achieved by vertical stacking; the interpretation here is that two
processes happen in sequence.

=g ◦ f

g

f

There is one more ingredient that is necessary to interpret these diagrams.
Namely, what is a plain wire? A fan of 0 might have have noticed that we
gave diagrammatic interpretations for two types of composition, but we did
not give a diagrammatic interpretation for the other key part of a category:
the identities. The identity for the monoidal composition is very simple, it
looks like this:

That is, the identity for the monoidal/horizontal composition is an empty
diagram.2 However, the identity for regular/vertical composition is not just
a blank diagram. It is a straight wire with no decorations, or several straight
wires. For instance, the following figure is the identity on H2O + H2 + O2.

It is the identity which allows us to apply a reaction to a subcomplex;
if f is a reaction that has domain A, then we can apply f to the complex

2Actually, in the 2-category setting where we color the background, the monoidal
identity would be a monochromatic square.

16

A⊗B by tensoring f with 1B.
There are more to string diagrams than particle-histories, however, so

the reader is advised to not get too attached to this interpretation. The
main take-away from this section should be the correspondence between
the graphical notation and the categorical operations: this is what will be
important for the next section.

4.3 String Diagrams As Circuits

We start by presenting a new style for string diagrams. The reader should
look at the following picture and try and work out for themselves how it
works as a string diagram.3

We hope that the reader should have no trouble exchanging dots for
boxes. The real challenge is that there are lines which loop back around. If
we interpret the diagram as an electronic circuit, where the lines are wires
and the boxes are circuit elements, then it is obvious how to interpret the
bends in the wires; one simply bends the wires. On the other hand, from
the perspective of Petri nets, the bends seem to break the laws that we have
established. How can a particle “loop around”—it seems like it is going back
in time!

However, there is a simple trick that allows us to interpret such bends.
Recall that the monoidal identity is an empty diagram. With that in mind,
the following diagram should give a clue on how we interpret bends.

Namely, we define a bend to be a morphism with input I (the identity) and
output A⊗A (and cobend is the other way around). Bend and cobend should
also satisfy some common-sense identies pictured below, which essentially just

3Our hope is that by forcing the reader to interpret new styles as string diagrams, we
encourage the reader to be on the alert for unintentional string diagrams in the notation
of other fields.

17

say that there are no “side-effects” to a bend; it is just a way of redirecting
wires.

= =

=

Categorically speaking, bend and cobend are natural transformations
between the functors A 7→ A⊗A and A 7→ I, that satisfy the above laws.

We will refrain from a rigorous treatment of electrical circuits as string
diagrams until after we have studied cospans.

4.4 The Braid Category

We promised earlier that we would discuss braided monoidal categories. We
now have the notation to make the word “braided” intuitive. In a braided
monoidal category, we write the braiding A ⊗ B ∼= B ⊗ A as one strand
crossing over another.

The inverse of the braiding is depicted by reversing the directions that
the strands cross, and it should make intuitive sense why it is the inverse:
one can imagine deforming the first diagram into the second without moving
the ends, if the strings are embedded in 3-space.

18

=

On the other hand, in a general braided monoidal category the below
equation does not hold.

=

If the string diagram is embedded in 3-space, then one cannot untangle
the two strands without moving the ends.4

The canonical example of a braided category is the braid category, which
is the free braided symmetric monoidal category on one object T . Note
that because it is a monoidal category, there are actually N objects in this
category, all tensor powers of the one generating objects. The morphisms
in this category are generated by the identity and the braiding: a typical
morphism in the braid category is pictured below.

If the reader has studied knot theory, the braid group should be familiar.
It might be surprising to learn that the braid group on n strands has an
algebraic presentation: it is the full subcategory of the braid category spanned
by the object T⊗n.

4On the other hand, if the string diagram is embedded in 4-space, then one can untangle
the two strands. Somehow, this has to do with the distinction between braided monoidal
and symmetric monoidal: the interested reader should consult [BS09] for an investigation
of interesting alignments along these lines.

19

4.5 Linear Algebra in String Diagrams

The previous two examples have both been schematic. That is, we used string
diagrams essentially as just fancy graphs. In this section, we will emphasize
the algebraic aspects of string diagrams; i.e. the ability for string diagrams
to be used as a tool for computation.

Consider the category LinRelk. This has a monoidal structure given by
direct product, as we talked about before. We also claimed that LinRelk
had an interesting algebraic structure. In this section we will discuss this
algebraic structure.

By algebraic structure, we mean that in the subcategory monoidally
generated on each object (i.e. maps V ⊗n to V ⊗m), there are distinguished
morphisms that satisfy some interesting algebraic structure. We call these
morphisms operations, in analogy to the operations of a ring. However, there
are much more of them.

Additionally, it turns out that if we restrict our attention to the subcate-
gory monoidally generated by k, these operations end up generating all of
the morphisms, and we will give a sketch of the proof for this.

We start out with the bend and cobend. This will save time, because
we can use the bend and cobend to dualize everything else, and thus avoid
having to present things twice. In the style for this section, bend and cobend
look like this (bend on the right):

We define the bend morphism by

{((v, v), 0) ∈ V ⊕2 × V ⊕0|v ∈ V }

and cobend is defined similarly.
There are then two pairs of operations which share a great deal of simi-

larities, so we will treat them at the same time.

We will defer the definition of these operations for a few moments, because
we want to confront the reader with the abstract syntax. If the reader

20

prefers concrete definitions, they are advised to skip the next page, read the
definitions, and come back.

Each of the operations can be dualized, and we write the dualized form
in the following manner. If the reader imagines that the strings can be pulled
and bent, then the dualization should seem (pictorially) very natural: we are
just spinning around the operations.

= =

This dualization should be defined by R ⊆ V ⊕n ⊕ V ⊕m mapsto Rop ⊆
V ⊕m⊕V ⊕n by just applying (v, w) 7→ (w, v). However, it is not immediately
clear how this dualization corresponds to the dualization via bend and cobend.
The reader should attempt to work out for themselves this correspondence
before moving on.

Each of the “forks” are commutative, that is

=

and each pair satisfies an “identity” law:

=

More generally, each of the pairs satisfy the laws for a Frobenius algebra,
which are given in [FS19, §6.3]. However, rather than getting too bogged
down in all of the algebraic details, we now give concrete definitions in the

21

category LinRelk and encourage the reader to come up with his or her own
laws that the operations satisfy.

The black dot operations are named zero:

{(0, 0) ∈ V ⊕0 ⊕ V ⊕1}

and sum
{((x, y), z) ∈ V ⊕2 ⊕ V ⊕1 | x+ y = z}

The motivated reader will check that each of the properties that we have
claimed to hold do in fact hold for this definition.

The white dot operations are named free

{(0, x) ∈ V ⊕0 ⊕ V ⊕1}

and coclone
{((x, x), x) ∈ V ⊕2 ⊕ V ⊕1}

Again, the reader is invited to verify the properties that we have stated.
In addition, the reader should work out the meaning of the following diagram
before moving forward.

The last operation we need is called ratio, and is defined for [a : b] ∈ kP 1

(1-dimensional projective space over k). The definition is

{(x, y) ∈ V ⊕1 ⊕ V ⊕1 | ay = bx}

and the operation looks like.

[a
:
b]

Note that we can now generate all relations between k and k. All
of the one-dimensional relations are handled by ratio, and the zero and

22

two-dimensionsional relations are handled by the following two diagrams,
respectively.

We will now sketch the proof that all linear relations between kn = k⊕n

and km = k⊕m are generated by these operations. We prove this with a
sequence of lemmas, working backwards from the conclusion. One thing that
we should note before starting, however, is that the key thing to realize is
that what we will be doing is making a presentation of a relation. Therefore,
it will not be unique, and will involve matrices.

Lemma 1. Any linear relation R ⊆ kn ⊕ km can be written as

x R y ⇔ there exists w ∈ k` such that Aw = x and Bw = y

for some fixed k`, and some fixed matrices A and B. More strongly: if
{(w,Aw) | w ∈ k`} and {(w,Bw) | w ∈ k`} are relations written in terms of
the basic operations, then we can write R in terms of the basic relations.

Proof. Fix a basis for R, and let k` ∼= R be the identification corresponding
to that basis. Then let A be a matrix representing π1 and let B be a matrix
representing π2. To see the stronger claim, observe Figure 6.

The problem now reduces to showing that we can generate the relationship
{(v,Av)|v ∈ kn} ⊆ kn ⊕ km for any n×m matrix A.

Lemma 2. Suppose that for i = 1, . . . , n, we have written the relation
Ri ⊆ k ⊕ km using our collection of basic operators. Then we can write the
relation R ⊆ kn ⊕ km, which is defined by

x R y ⇔ xi Ri y for all i

using our collection of basic operators.

Proof. The basic idea is to generalize Figure 7. Essentially, we use the /clone/
operation to split the input up into n different copies. We then apply Ri to
each of those copies.

23

A

Bop

km

k`

kn

Figure 6: Relations from Matrices

R1 R2

x1 x2

y1 y2 y3

Figure 7: Composition of row vectors to produce a matrix

Lemma 3. Any linear relation of the form {(y,
∑

j ajyj) | y ∈ kn} can be
written using the basic operations above.

Proof. Again, the basic idea is to generalize Figure 8. We multiply each input
by the corresponding element of the row vector, and then add all of them
together.

We are now ready for the main proof.

Proof. With these lemmas, the proof of the main theorem becomes almost
trivial. To construct a diagram that presents a relation R ⊆ kn ⊕ km, let
w1, . . . , w` be a basis for R. Then let A be the matrix that represents π1
in this basis, and let B be the matrix that represents π2. By Lemma 1, it
suffices to find relationships {(Aw,w) | w ∈ k`} and {(w,Bw) | w ∈ k`}. By
Lemma 2, it suffices to find relationships {(Aiw,w) | w ∈ k`} for all rows Ai

24

[1
:
a
1
]

[1
:
a
2
]

[1
:
a
3
]

y1 y2 y3

x

Figure 8: Creation of a row vector

of A, and {(w,Biw) | w ∈ k`} for all rows Bi of B. Finally, we can do this
by Lemma 3.

5 Cospans

5.1 Basic Cospans

Let C be a category with pushouts. Then we define a category Csp(C) in
the following way. The objects of Csp(C) are just the objects of C. However,
an arrow between a, b ∈ Csp(C) is a diagram in C of the form

c

a b

fa fb

This is called a cospan.5 We also write a cospan inline like this: a fa−→ c
fb←− b.

Now, if we have two cospans that share a common “foot”, i.e.

c d

a b e

fa fb gb gc

5A diagram of the form
c

a b

fa fb

is called a span.

25

we can compose them into a cospan from a to e by taking the pushout of

c d

b

fb gb

in order to get

c tb d

c d

a b e

ic id

fa fb gb gc

However, the categorically fastidious reader may have noticed a problem.
Pushouts are only defined up to isomorphism, while composition of morphisms
in a category is supposed to be a function. The solution is to just take the
morphisms in Csp(C) to be isomorphism classes of cospans, where a morphism
between two cospans is a vertical arrow in the following diagram that makes
it commute:

c

a b

c′

As one might expect, the dual of a cospan is a span.

Example 16. As we saw earlier in Lemma 1, any linear relation R ⊆ V ⊕W
can be described by a span: V π1←− R

π2−→ W . However, it is also possible
to describe a linear relation by a cospan. Namely, x R y if and only if
f(x) = g(y), where V f−→ U

g←− W is a cospan. It is left to the reader to
discover whether all relations can be written in this form.

If the underlying category is monoidal, then the (co)span category will
be monoidal as well. Composing (co)spans is done in a natural way:

26

A C B

⊗ = A⊗X C ⊗ Z B ⊗ Y

X Z Y

Example 17. The category of (possibly decorated) graphs has pushouts, so
we can form the category of cospans over this category. This category allows
us to glue together graphs along common subgraphs. Moreover, it inherits a
monoidal structure from the monoidal structure on the category of decorated
graphs.

From a purely theoretical standpoint, there is nothing wrong with the
previous example. However, if we want to model electronic circuits, in physical
practice we only glue (or rather, solder) together terminals. It does not make
sense to identify two resistors. In order to solve this issue, we need a more
advanced framework.

5.2 Structured Cospans

One problem with cospans is that we often want to restrict the type of feet.
For instance, in the case of electronic circuits, the apex of the cospan can be
very complicated: it can be a highly decorated graph. However, we want the
feet to act like “plugs”, so the feet should be discrete graphs.

The naive way to achieve this is to say that only a subset of the objects
of a category can be feet. However, this is not very categorical. A better way
is to have a “category of feet” D, along with a functor F : D −→ C. Then a
“structured cospan” is a diagram of the form

c

F (a) F (b)

fa fb

Just as we can do with regular cospans, we can construct a category
F Csp(C), where ob(F Csp(C)) = ob(D) and morphisms are isomorphism
classes of decorated cospans. This construction is due to [BC20]. Previously,
there was another way of doing a similar thing called decorated cospans; it
is our opinion that structured cospans are more straightforward and elegant

27

Figure 9: An Open Circuit

way of presenting many of the categories that decorated cospans were used
for.

If D and C are monoidal categories and F is a monoidal functor, then
F Csp(C) inherits a monoidal structure in the same way that Csp(C) does,

F (a) c F (b)

⊗ = F (a⊗ x) c⊗ z F (b⊗ y)

F (x) z F (y)

5.3 Categories of Open Systems

Using the technology of structured cospans, we can efficiently describe cate-
gories of open systems.

Example 18. In the section on electronic circuits, we deferred the discussion
of how to construct the underlying category. We are now ready to give a
more thorough treatment of this. Let F be the functor from FinSet to the
category of R≥0-decorated graphs, Grph.

Then F Csp(Grph) is a monoidal category. A morphism in this category
is a circuit comprised of resistors along with an assignment of “input” and
“output” ports. This is pictured in Figure 9. Note that unlike our previous
convention, we draw this horizontally. This is for two reasons. One is that it
fits better on the page. The other is that it is often drawn horizontally in
the literature, and we would like to accustom the reader to reading string
diagrams horizontally as well as vertically.

Example 19. We can also construct a category of open Petri nets. There is a
functor from FinSet to Petri which sends a finite set to the Petri net with that

28

set of species and no reactions. Taking the structured cospan category on
this functor leads to a category where we can compose (isomorphism classes
of) Petri nets. [BC20].

5.4 Corelations

In the next big section, we will take these structured cospan categories and
develop semantics for them. However, this review would be incomplete if it
did not mention the theory of corelations. The essential idea of corelations
is that if all we care about in a (structured) cospan is the relationship that
it induces on the feet (as we saw before, a cospan of vector spaces induces
a linear relation on the feet), then often there are “inessential” parts of the
apex of the cospan that we can discard. For instance, if we have an open
circuit, then connected components that are not connected to the input or
output we should be able to do without. Corelations give a way of finding a
“minimal” cospan that represents the same relationship as a given cospan.

We will not develop the theory here, because we do not need it for later
sections, but the interested reader should refer to [Fon16].

6 Semantic Functors

One of the reasons that we are interested in open processes is so that large
unwieldy closed models can be broken up into smaller closed pieces and
studied. However, we need some sort of guarantee that after we break up the
large unwieldy model, study the pieces separately, and put the pieces back
together, we will have the same picture.

This guarantee comes in the form of functorial semantics. The idea is
that there are two categories, S and B. S is the category of schematics : the
arrows and morphisms are descriptions for models. Then B is the category
of behaviors: the arrows and morphisms are the actual fleshed-out model.

Then the functor assigns a semantic to each model, and the functor laws
ensure that this assigning of semantics respects composition of models.

From a mathematical standpoint, there is nothing special about semantic
functors. The interest in semantic functors comes from taking a semantic
that already exists for a certain type of model, and realizing that it is in fact
a functor; i.e. that the semantic respects composition.

In this section, we will discuss several semantics for the models that we
have been talking about, and show that these semantics are functorial.

29

6.1 Steady State Solutions for Resistor Networks

Suppose that
R≥0 W Jρ

s

t

is a decorated graph, which we will call C. The intent is for C to represent a
simple electronic circuit. W is the set of “wires”, J is the set of “junctions”,
and ρ(w) is the “inverse resistance” associated to each wire.

We are interested in steady-state (i.e., not time-varying) assignments of
voltages to each junction that satisfy some laws from physics.

Definition 1. If {Vi}i∈J ∈ RJ is an assignment of a voltage to each circuit
junction in C, then the current flowing through a wire w : i −→ j is defined
to be ρ(w)(Vj − Vi). In the real world, this is called Ohm’s law (typically
formulated as V = IR); here it is just the definition of current.

In the real world, current is the rate at which charge flows. This is
important, because it means that in order for charge to be conserved, the
current flowing into any junction must be equal to the current flowing out of
that junction.

Definition 2. Wires in the real world are undirected. Therefore, our dec-
orated graph has extraneous information. To simplify matters, we will say
that w : i↔ j if w : i −→ j or w : i←− j.

Definition 3. We say that the current incident on a junction i is

Ii =
∑
j∈J

∑
w : i↔j

ρ(w)(Vj − Vi)

If Ii is positive, then current is coming into i and leaking out of the circuit
somehow. We say that current is conserved at i if Ii = 0.

Notice that this equation is linear in {Vi}i∈J . The set of solutions to this
equation is therefore a real vector space.

Now, in a closed system, we would require Ii = 0 for all i ∈ J . However,
this does not lead to anything interesting, because it turns out that each
connected component of the graph would have to have the same voltage in
all of its junctions in order to satisfy the current conservation laws. Thus,
the solution set is a vector space with dimension equal to the number of
connected components.

In order to get interesting behavior out of a circuit, we have to add nodes
where current can flow in and out, that is nodes where Ii 6= 0. This is always

30

the case in the real world: a circuit has (at least) a power supply, which
is held at a constant high voltage, and a ground wire, which is held at a
constant low voltage. Conservation of current does not apply at the power
supply junction or at the grounding junction.

To model this, we return to the structured cospan category for decorated
graphs over FinSet. Consider a structured cospan

C

F (A) F (B)

f g

Then we say that a node is an external node if it lies in the image of f or
g, and an internal node otherwise.

We assign to this structured cospan a span in VecR, which looks like

VA,B(C)

V(A) V(B)

V(f) V(g)

VA,B(C) is the vector space corresponding to all assignments of voltages
to the junctions in C that satisfy charge conservation at internal nodes. That
is, if {Vi}i∈J ∈ VA,B(C), then Ii = 0 for all internal i ∈ J .
V(A) is RA ×RA, and V(B) is RB ×RB . V(f) and V(g) are defined by

V(f)({Vi}i∈J) = {Vf(a)}a∈A × {−If(a)}a∈A
V(g)({Vi}i∈J) = {Vg(a)}a∈A × {Ig(a)}a∈A

Intuitively, V(f) sends a voltage assignment to the voltages and “input”
currents of the “input” (F (A) −→ C) and V(g) sends a voltage assignment to
the voltages and “output” currents of the “output” (C ←− F (B)).

So that we don’t “double-count” current outputs, we require that f and g
are injective and have disjoint images. It can be verified that this requirement
leads to a subcategory of the cospan category.

The upshot of this is that when we compose spans using pullback, matching
up currents and voltages ensures that current is conserved in what is now a
new internal node.

6.2 Open Dynamical Systems

In order to apply a similar semantic functor to the category of Petri nets, we
will take a brief diversion to discuss what the codomain looks like.

31

What is a dynamical system? For the sake of this thesis, we will think
about a dynamical system as a functor E from the category BM (the category
representing a linearly ordered commutative monoid M) into some other
category. For instance, in physics, M is R≥0 and the “other category” is
often the category of manifolds and smooth functions. This gives a smooth
“evolution” operator Et : X −→ X for each t such that Et ◦ Et′ = Et′+t.

One way of deriving such a functor is by defining a vector field (i.e.
a section of the tangent bundle) on X and letting Et be the 1-parameter
diffeomorphism group associated with that vector field. This will not always
work, for instance if the vector field is not well-behaved. However, for the
purposes of this exposition, we will not worry about such details. We can
get away with this by only considering algebraic vector fields on Rn (i.e., a
polynomial map Rn −→ R

n); these are known to be sufficiently well-behaved
for our purposes. Therefore, it suffices to define a dynamical system as an
algebraic vector field on Rn.

But what is an open dynamical system? In the introduction, we defined
an open system as one which receives influence through its boundary. So we
need to designate a boundary, and we need to define how the open system
receives influence through this boundary.

Designating a boundary at this point is routine: if the system is S (i.e.
we will put a differential equation on RS), then a boundary is a map of sets
B −→ S. Before we define how the system is affected through B, we will
allows ourselves some philosophy.

Intuitively, differential equations in dynamical systems enforce conserva-
tion laws. Famously, Newton’s laws conserve mass, energy, and momentum;
Maxwell’s laws conserve charge and energy. When we allow these differential
equations not to hold, we are allowing conserved quantities to flow in and
out of our system. Therefore, material flowing through the boundary is
represented by a deviation from the differential equation. We express this de-
viation by defining a function D : R≥0 −→ R

B , and making a new differential
equation

∂

∂t
y(t) = A(y(t)) + d∗(D(t))

where d∗(D(t)) is the pushforward of v along d, defined by d∗(v)j =
∑

d(i)=j vj ∈
R
S . D represents flows of material or energy through the boundary B.

Example 20. In an electrodynamical system, D(t) could represent the current
flowing through the boundary at time t.

Example 21. In a thermodynamical system where y0, y1 are the temperature
and pressure of the environment, then we might assert through fiat that

32

y0(t) = C0 and y1(t) = C1 for all time, and exempt them from being affected
by the system. This would result in heat transfers and volume or molecule
transfers through the boundary of the system, and we could capture this by
making Di(t) = −Ai(y(t)), so that ∂

∂t yi(t) = 0.

We want to make a category of open dynamical systems. In order to do
this, we need to split the boundary into input and output components, so
that we have a cospan.

S

X Y

i
o

Then, given I : R≥0 −→ R
X and O : R≥0 −→ R

Y , we define the equation
associated to an open dynamical system to be:

∂

∂t
x(t) = A(x(t)) + i∗(I(t))− o∗(O(t))

i∗ and o∗ are the pushforward maps, which are defined by:

i∗(v)k =
∑
i(j)=k

vj

o∗(v)k =
∑
o(j)=k

vk

Finally, to compose two open dynamical systems

S1 S2

X1 Y1 = X2 Y2

i1
o1

i2
o2

with vector fields A1 : RS1 −→ R
S1 and A2 : RS2 −→ R

S2 , we take the pushout

S = S1 tY1=X2 S2

S1 S2

X1 Y1 = X2 Y2

i1
o1

i2

o2

33

and associate with it a vector field A : RS −→ R
S defined by A(v) = A1(v|S1)+

A2(v|S2).
That this construction ends up making a well-defined category is proved

in [Pol17].
The way that we suggest thinking about the category of open dynamical

systems is that when we fix flows on the boundary, we end up being able
to evolve the state of the system through time. As we suggested in the
introduction, a good way to do this is by defining a functor from the poset
R to the category of manifolds, so that we have a smooth map from R

n to
R
n for every poset morphism t −→ t′. The mechanism of the algebraic vector

field is a somewhat arbitrary implementation of this, which we put in place
because it guarantees good behavior.

6.3 Rate Equation for Petri Nets

Our motivation for introducing the category of open dynamical systems was to
give a semantic for Petri nets. By what we said above, it suffices to associate
a differential equation to each Petri net (or more formally, an algebraic vector
field). Once we have done this, a structured cospan F (a) −→ c←− F (b) with
feet finite sets, and with apex a Petri net, will map to an open dynamical
system in a natural way.

We derive the form of this differential equation through three principles
[BB12]. But before we get into the derivation, we make one clarifying remark.
Previously, we associated to each reaction a rate. However, we would now
like to use “rate” to refer to the speed at which the reaction is taking place
at an instant in time. Therefore, we will use the term “rate multiplier” to
refer to the earlier “rate”, and reserve the term “rate” for instantaneous rate.

With that cleared up, here are the three principles.

1. The rate of a reaction only depends on the current concentrations of
species, not on the rate of any other reaction.

2. The rate of a reaction is proportional to the product of the current
quantities of the inputs, multiplied by the base rate.

3. The derivative of species concentration in a single-reaction Petri net
is proportional to the difference between the number of that species
produced and consumed by that reaction, multiplied by the rate of that
reaction.

These principles have the following consequences.

34

s

Figure 10: Exponential Decay

1. A = A1 + . . .+Ak, where Ai is the operator associated to a Petri net
with only reaction i. Therefore, we assume that k = 1, and we let r be
the rate associated to the single reaction, ni be the number of species i
output by the reaction and mi be the number of species i consumed by
the reaction.

2. If yi = Et(x0)i, then the rate of the one reaction is r
∏
i y
mi
i .

3. The jth component of A(y) is (nj −mj)r
∏
i y
mi
i .

The differential equation that we end up with after applying these princi-
ples is called the rate equation. It is possible to write down the rate equation
in a closed form, but it is our opinion that no clarity is gained from that.
Instead, we will do examples.

Example 22. Suppose that we are tasked to model the behavior of a lump of
uranium. Famously, uranium randomly decays into other particles (which
we don’t care about). We model this with a Petri net with one species,
uranium, and one reaction, decay, which has input a single molecule of
uranium, and output nothing. The schematic for this is in Figure 10. We
only have one species and one reaction, and m0 = 1 while n0 = 0. Therefore,
A(y) = (0− 1)ry1 = −ry. This is the well-known equation for exponential
decay, with solution yt = y0e

−rt. Therefore, Et = e−rt. It is rare that there
is a closed form solution for Et, except for in simple cases like this one.

Example 23. Recall the Petri net presented in Figure 2. Let rB, rP and rD
be the rate multipliers associated to “birth”, “predation”, and “death”, and let
yR be the concentration of rabbits while yW is the concentration of wolves.
Then the rate of birth is rByR, the rate of predation is rP yRyW , and the rate
of death is rDyW . The resulting system of differential equations is

∂

∂t
yR = rByR − rP yRyW

∂

∂t
yW = rP yRyW − rDyW

There is not a corresponding closed form solution for the evolution operator,
however this can be evaluated numerically.

35

The author has created a tool for numerical solutions of the rate equation,
which is available online at https://owenlynch.org/static/ez-petri. No
download is required: it runs in the browser. The source code is also freely
available at https://github.com/olynch/ez-petri.

Now that we have defined the rate equation, we can define a functor from
the category of open Petri nets to the category of open dynamical systems.
This functor is more or less straightforward: we send an open Petri net

P

F (X) F (Y)

to a open dynamical system with underlying cospan

S

X Y

where S is the set of species in P , along with the rate equation on S.

36

https://owenlynch.org/static/ez-petri
https://github.com/olynch/ez-petri

References

[BB12] John C. Baez and Jacob Biamonte.Quantum Techniques for Stochas-
tic Mechanics. 2012. arXiv: 1209.3632v5 [quant-ph].

[BC18] John C. Baez and Kenny Courser. “Coarse-Graining Open Markov
Processes.” In: (Nov. 21, 2018). arXiv: 1710.11343 [math-ph]. url:
http://arxiv.org/abs/1710.11343 (visited on 03/05/2020).

[BC20] John C. Baez and Kenny Courser. “Structured Cospans.” In: (Jan. 3,
2020). arXiv: 1911.04630 [math]. url: http://arxiv.org/abs/
1911.04630 (visited on 04/13/2020).

[BS09] John C. Baez and Mike Stay. “Physics, Topology, Logic and Compu-
tation: A Rosetta Stone.” In: (2009). arXiv: 0903.0340v3 [quant-ph].

[Fon16] Brendan Fong. “The Algebra of Open and Interconnected Systems.”
In: (Sept. 17, 2016). arXiv: 1609.05382 [math]. url: http://
arxiv.org/abs/1609.05382 (visited on 04/13/2020).

[FS19] Brendan Fong and David I. Spivak. An Invitation to Applied Cat-
egory Theory: Seven Sketches in Compositionality. 1st ed. Cam-
bridge University Press, July 18, 2019. isbn: 978-1-108-66880-4 978-
1-108-48229-5 978-1-108-71182-1. doi: 10.1017/9781108668804.
url: https://www.cambridge.org/core/product/identifier/
9781108668804/type/book (visited on 04/13/2020).

[Lei03] Tom Leinster. “Higher Operads, Higher Categories.” In: (May 2,
2003). arXiv: math/0305049. url: http://arxiv.org/abs/math/
0305049 (visited on 04/23/2020).

[Pol17] Blake S. Pollard. “Open Markov Processes and Reaction Networks.”
In: (Sept. 29, 2017). arXiv: 1709.09743 [cond-mat, physics:math-ph].
url: http://arxiv.org/abs/1709.09743 (visited on 04/13/2020).

[Sch81] J. Schnakenberg. Thermodynamic Network Analysis of Biological
Systems. Universitext. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1981. isbn: 978-3-540-10612-8 978-3-642-67971-1. doi: 10.
1007/978-3-642-67971-1. url: http://link.springer.com/10.
1007/978-3-642-67971-1 (visited on 04/13/2020).

37

https://arxiv.org/abs/1209.3632v5
https://arxiv.org/abs/1710.11343
http://arxiv.org/abs/1710.11343
https://arxiv.org/abs/1911.04630
http://arxiv.org/abs/1911.04630
http://arxiv.org/abs/1911.04630
https://arxiv.org/abs/0903.0340v3
https://arxiv.org/abs/1609.05382
http://arxiv.org/abs/1609.05382
http://arxiv.org/abs/1609.05382
https://doi.org/10.1017/9781108668804
https://www.cambridge.org/core/product/identifier/9781108668804/type/book
https://www.cambridge.org/core/product/identifier/9781108668804/type/book
https://arxiv.org/abs/math/0305049
http://arxiv.org/abs/math/0305049
http://arxiv.org/abs/math/0305049
https://arxiv.org/abs/1709.09743
http://arxiv.org/abs/1709.09743
https://doi.org/10.1007/978-3-642-67971-1
https://doi.org/10.1007/978-3-642-67971-1
http://link.springer.com/10.1007/978-3-642-67971-1
http://link.springer.com/10.1007/978-3-642-67971-1

	Introduction
	The Purpose of this Review
	What is a System?
	What is an Open System?

	Material
	Decorated Graphs
	Chemical Reactions
	Linear Algebra

	Monoidal Categories
	Overview
	Monoidal Functors
	Symmetric Monoidal Categories
	Petri Nets as Presentations of SSMCs

	String Diagrams
	String Diagrams as Dual to Commutative Diagrams
	String Diagrams as Histories
	String Diagrams As Circuits
	The Braid Category
	Linear Algebra in String Diagrams

	Cospans
	Basic Cospans
	Structured Cospans
	Categories of Open Systems
	Corelations

	Semantic Functors
	Steady State Solutions for Resistor Networks
	Open Dynamical Systems
	Rate Equation for Petri Nets

