
DESSIN D’ENFANTS AND EQUIVALENT SETS

CLAIRE FRECHETTE

Abstract. In this paper, we explore Grothendieck’s dessins d’enfants, explaining
the bijection between this set of bicolored maps and equivalent sets from combi-
natorics and algebraic geometry. In particular, we also calculate explicit examples
of these correspondences.

1. Introduction

Arguably, one of the most fascinating phenomena in mathematics is when classes
of objects arise from seemingly vastly different subfields, but reveal themselves to be
in bijection. Such is the case with Grothendieck’s dessins d’enfants, bicolored graphs
embedded on surfaces, the data of which can be expressed purely combinatorially,
as triples of permutations; topologically, as coverings of the complex sphere ramified
at only three points; algebro-geometrically, as Riemann surfaces defined over Q; or
number theoretically, as equations in complex projective space. In particular, if we
choose to look at only dessins of genus one, which can be embedded on the torus, we
can follow through this complicated chain of equivalences to represent these dessins
as specific elliptic curves.

In this paper, we explore these different equivalences and how one gets back and
forth between each set.

Theorem 1.1. There are natural bijections between the following sets, each up to
isomorphism:

• {dessins d’enfants}
• {combinatorial maps, i.e. 3-constellations [g1, g2, g3] such that g2 is an invo-

lution without fixed points}
• {Bely̌ı maps, i.e. a compact, connected Riemann surface X together with a

function f : X → C ramified at at most 3 points}.
Remark: the precise notions of isomorphisms for each set will be defined in the
corresponding sections.

Theorem 1.2. (Bely̌ı). The Riemann surfaces which admit Bely̌ı maps are precisely
the ones that may be defined over Q.
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The paper is organized as follows: we start, in Section 2, with the graph theory
version: graphs embedded on surfaces, building up to the definition of a dessin. In
Section 3, we prove the bijection between dessins and combinatorial maps, which
are specific sets of permutations called constellations. We then prove in Section 4
an intermediate step in the bijection between dessins and Bely̌ı maps, proving that
our set of dessins is bijective to the set of coverings for the complex sphere ramified
at three points. Section 5 takes these coverings and completes the second bijection
by identifying them with algebraic geometric constructions called Riemann surfaces,
which can be expressed in terms of equations, along with functions to C called Bely̌ı
functinos. In particular, genus one Riemann surfaces are also known as elliptic curves,
which are defined in Section 7. In Section 6, we prove Bely̌ı’s Theorem (Theorem
1.2), to give a better description of which Riemann surfaces participate in the Bely̌ı
maps of our third set. Finally, Sections 8 and 9 are concrete examples: taking a
particularly nice genus one dessin and a not-so-nice genus one dessin, respectively,
through each set on the way to an elliptic curve and its j-invariant.

The author would like to thank Prof. Melody Chan, her advisor, without whom
this thesis would not have been written. The author would also like to thank Prof.
Joseph Silverman and Prof. John Voight for useful conversations, and the Brown
University Mathematics Department for its support.

2. The Graph Theory Part

To understand the first category, dessins d’enfants, we first need some definitions
from graph theory.

2.1. Some Basic Graph Theory.

Definition 2.1. A graph Γ = (V,E, I) is a triple of a set of vertices V , a set of edges
E, and an incidence relation I between edges and vertices such that we say an edge
e ∈ E is incident to two vertices vi, vj which may or may not be distinct. If vi = vj,
we call e a loop.

Figure 1. An example of a graph.
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If we have two edges e1, e2 between the same pair of vertices, we call them multiple
edges. We call that the number of edges incident to a vertex v the degree of v and
denote it deg(v), noting that loops from v to v count twice. Note that each edge is
incident to 2 vertices, so ∑

v∈V

deg(v) = 2|E|.

Definition 2.2. A path is a sequence v0, e1, v1, e2, . . . , vn in which ei is incident to
vi−1 and vi. If v0 = vn, we call the path a cycle.

Definition 2.3. A graph Γ is connected if any two vertices may be connected by a
path.

However, it is impossible to embed certain graphs in the plane or the sphere
without edge crossings: we think of these maps as belonging on a different kind
of surface, namely one with holes around which we can detour the extra edges to
eliminate crossings.

2.2. Graphs Embedded on Surfaces.

Definition 2.4. A surface is a two-dimensional topological manifold. We will con-
sider our surfaces to be not only orientable but to already have a fixed orientation.

Furthermore, every surface has an invariant called the genus, g, which intuitively,
we think of as being the number of holes through the surface. Note that the genus
cannot be negative.

Figure 2. Surfaces of different genus: the sphere (genus 0), the torus
(genus 1), and the two-holed torus (genus 2).

Definition 2.5. A map M is a graph GM together with an embedding of GM onto
a surface X (so we can view Γ ⊂ X) such that:

• the vertices are distinct points on the surface;
• the edges are curves on the surface that intersect only at the appropriate

vertices;
• if we cut the surface along the graph, the remainder X \Γ is a disjoint union

of connected components homeomorphic to disks, which we call faces.
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To distinguish between maps that are essentially the same, we introduce a notion
of equivalence.

Definition 2.6. Two maps M1 ⊂ X1 and M2 ⊂ X2 are isomorphic if there exists
an orientation preserving homeomorphism u : X1 → X2 such that u|M1 is a graph
isomorphism between GM1 and GM2 .

Note that we need to be careful here: there are homeomorphisms for surfaces of
genus g ≥ 1 which realize non-trivial elements of what is called the mapping class
group [3, Ch. 2,3]. This group can be generated by constructions known as Dehn
twists : cutting the surface along a closed curve which doesn’t bound a topological
disk, we twist one of the borders around by 2π and glue it back together with the
other (see Figure 3).

Figure 3. The Dehn twist of a map is in the same isomorphism class.

Note that while we consider these two maps as isomorphic, we cannot get the
second map by slowly deforming the first, i.e. by applying an isotopy of the surface.

Furthermore, we comment that the graph GM associated to a map M must be
connected. If we try to draw a disconnected graph on a surface, we necessarily get a
face violating the third condition for maps, as we can see in Figure 4.

Figure 4. A disconnected map can’t give us faces homeomorphic to disks.



DESSINS AND EQUIVALENCES 5

The last condition then gives rise to the question: which graphs can be embedded
as maps on which surfaces? For instance, we can embed the graph G below on the
torus as shown in Figure 5, but it fails the third condition necessary to be a map.

Figure 5. A graph that isn’t a map because the back face has a hole in it.

This conundrum gives rise to the notion of the genus of a map, which we can
calculate using the standard Euler characteristic.

Theorem 2.7. (Euler, Lhuilier). We associate to a map M the Euler characteristic

χ(M) = |V |−|E|+|F |.
Furthermore, we have that

χ(M) = 2− 2g,

where we call g the genus of the map. Note that the genus of a map M will be the
same as the genus of its surface X.

Proof. See [7, §1.3]. �

However, note that the graph G does not determine the map M , since we can
embed a graph in many different ways. For instance, the two maps in Figure 6,
shown embedded on the sphere S2, have the same associated graph G.

Figure 6. Two different maps, embedded on the sphere, from the
same graph.
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Surprisingly, GM does not even determine the genus of M . For example, take the
tetrahedron, which we would describe as:

V = {A,B,C,D},
E = {AB,AC,AD,BC,BD,CD}.

Note that we are folding the incidence relation into the edge set by labelling the
edges with their incident vertices.

There is a planar embedding of the tetrahedron, i.e. an embedding with genus 0,
as shown in Figure 7.

A

B

C D

Figure 7. A planar embedding of the tetrahedron.

However, we can embed the same graph on the torus as in Figure 8, in which case
the resulting map has genus 1.

C

A

B
D

Figure 8. A genus 1 embedding of the tetrahedron on a torus.

Remark. In some cases, we look at a map M of genus 1 or greater, but for simplicity
of drawing we want to present M as drawn in the plane. To do this, consider each
edge of M as two pieces, each incident to one vertex of M . Given that M ’s surface
is oriented, we can provide a cyclic order on the half-edges incident to a vertex by
considering them in the counter-clockwise direction, as shown in Figure 9.
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Figure 9. Cyclic ordering around a vertex.

We then label the half-edges in order in the counter-clockwise direction, putting
the label on the left as we exit the vertex. Then, if we force the map into the plane,
the labelling of these half-edges allows us to reconstruct the original map: we just
redraw the half-edges around a particular vertex in numerical order and connect half-
edges of the same edge together. For an example, see Figure 10, which reconstructs
to Figure 12. Another example is the dessin in Section 8.

2.3. Defining Dessins D’enfants.

Grothendieck’s dessins d’enfants are a specific type of map along with an extra
piece of information; to define them, we first need one more important definition.

Definition 2.8. We say that a graph is bipartite if we can color its vertices using only
two colors, such that no edge connects vertices of the same color. We say a bicoloring
of a connected bipartite graph is a choice of one of the two possible colorings.

Note that given any map, we can turn it into a bicolored map by coloring its
existing vertices black and placing a white vertex at the midpoint of every edge.
Then, the original half-edges have now become edges connecting a black vertex to a
white one. For instance, take the map on the left in Figure 10, which has genus one.
We add extra vertices at the midpoints of the edges, and we get the bicolored map
on the right.

Figure 10. A map becomes a dessin.
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To maintain the same numbering convention as before, we note that the label of
an edge still goes on the left-hand side as we travel from the black vertex to the
white. We then say that an edge is incident to a face if its label is within that face.

Definition 2.9. We’ll call a bicolored map a dessin d’enfant, or a dessin for short.
Furthermore, we call the segment [0, 1] on the sphere, where 0 is a black vertex and
1 a white vertex, the elementary dessin (see Figure 11).

Figure 11. The elementary dessin.

Definition 2.10. Two dessins M1,M2 are isomorphic if they are isomorphic as
maps under an isomorphism which preserves the bicoloring, i.e. if there exists an
orientation preserving homeomorphism u : X1 → X2 such that u|M1 is a graph
isomorphism between GM1 and GM2 and u sends black vertices of M1 to black vertices
of M2 and white vertices of M1 to white vertices M2.

3. The Combinatorics Part

3.1. Dessins as Combinatorial Data.
To prove the bijection between dessins and combinatorial maps, we start with the

question: given a dessin M , can we encode it into purely combinatorial data? In
fact, all the data of M can be provided by a set of two permutations. To form these,
take M and consider the half-edges incident to each vertex, recalling the notion of
cyclic order defined in Figure 9.

Given a dessin M , let σ be the permutation σ = c1c2 · · · cn, where ci is the cyclic
order of edges around black vertices vi. Let α be the permutation α = t1t2 · · · tm,
where ti is the cyclic order of edges around white vertices wi.

Note: in calculating these permutations, we must view the dessin as embedded on
its surface, rather than as forcibly drawn in the plane.

Example. The dessin M in Figure 10 has genus one and thus embeds onto the torus
as in Figure 12. Note that we visualize the torus as a square with opposite sides
identified. Then, we can easily see that σ = (1, 2, 3, 4, 5, 6) and α = (1, 4)(2, 6)(3, 5).
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Figure 12. The dessin in Figure 10 embedded on the torus.

Furthermore, we can construct a permutation φ which illuminates which edges are
incident to each face.

Lemma 3.1. The permutation σ represents the action around black vertices, and
the permutation α represents the action around white vertices, so

φ = α−1σ−1

represents the faces of the dessin associated to α and σ.

Proof. Immediately visualizable from the dessin. Else, see [7, §1.3]. �

Example. For instance, using the same dessin as in Figure 12, we calculate

φ = α−1σ−1

= (1, 4)(2, 6)(3, 5)(1, 6, 5, 4, 3, 2)

= (1, 3, 4, 6)(2, 5).

Remark. Following the convention of [7], we multiply permutations from left to right
here.

Note: in the outer face on a planar map embedded on the sphere, we read the
labels from the other side of the sphere, so they appear to go in a clockwise direction
from our planar drawing but actually follow the same counterclockwise rule as the
other faces.

3.2. Combinatorial Data as a Dessin.
If, on the other hand, we have a triple of permutations [σ, α, φ] which we know

corresponds to a dessin M , we can reconstruct M embedded on its surface by the
following construction:

• Create a m-gon for every cycle of length m in φ, giving it a counter-clockwise-
oriented border and labeling the edges inside by the cycle in that direction.
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• Glue polygons together along their edges according to α so that the orienta-
tion of sides glued together is opposite This ensures that our surface will be
oriented properly.
• Place black vertices at jointures of polygons following cycles of σ, and white

vertices for cycles of α.

Since σ = φ−1α−1, the polygons will already give the correct cyclic order around
each vertex, and their orientations will match around the vertices. The only thing
we have left to do is check that what we have actually is a surface: that is, that
a neighborhood around any point is homeomorphic to a disk in R2. Obviously for
points on the interior of a polygon, we are fine. For points on an edge, we take half
the disk from each polygon. For points on a vertex with multiple polygons coming
together, we take a slice from each.

Figure 13. The three different cases for disks.

Note that if we take a map illegally embedded on a surface–that is to say, with
not all faces being homeomorphic to a disk, and we encode it as permutations, then
reconstruct it, the resulting map will be legally embedded on a different surface and
will show us the true genus of the map.

However, this construction raises the question: how do we know which sets of
permutations correspond to a map? To classify these sets, we introduce the notion
of constellations.

3.3. Constellations.

Definition 3.2. A constellation or k-constellation is a sequence [g1, g2, . . . , gk] of
elements gi ∈ Sn such that:

• the group G = 〈g1, g2, . . . , gk〉 acts transitively on the set {1, . . . , n};
• the product g1g2 · · · gk = id, the identity permutation.

We then say that n is the degree of the constellation, and k is its length.

Definition 3.3. The group G = 〈g1, g2, . . . , gk〉 is called the monodromy group or
the cartographic group. Note that G is a permutation group.
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However, we are interested in a specific set of constellations, namely those equiv-
alent to dessins.

Definition 3.4. A combinatorial map is a 3-constellation [σ, α, φ].

Remark. By a result of Dixon [2], the monodromy group of a randomly chosen set of
permutations is almost always either Sn, the full permutation group on n elements,
or An, the alternating group on n elements.

Definition 3.5. Two combinatorial maps C = [g1, g2, g3] and C ′ = [g′1, g
′
2, g
′
3] acting

on sets E and E ′, respectively, are isomorphic if there exists a bijection f : E → E ′

such that g′i = f−1gif for i = 1, 2, 3. Furthermore, C and C ′ are conjugate if E = E ′

and h ∈ G = 〈g1, g2, g3〉.

Now that we have fully defined our combinatorial maps and their isomorphisms,
we prove the bijection between the first and second sets of Theorem 1.1.

The constructions in Section 3.1 give us functions:

f : {dessins} → {combinatorial maps},
and

g : {combinatorial maps} → {dessins}.
We thus need to check that these functions give us a bijection between the two

sets, up to isomorphism on each.
First we tackle the obvious problem: there are multiple ways to label a dessin.

However, the way we have defined isomorphisms on combinatorial maps gives us
that two labelings of a dessin result in isomorphic combinatorial maps. Furthermore,
isomorphisms on dessins carry through to combinatorial maps, creating a subgroup
in the monodromy group G.

Definition 3.6. The automorphism group of a combinatorial mapM , calledAut(M),
is the centralizer of the monodromy group GM . That is to say,

Aut(M) = {h : h−1gh = g,∀g ∈ G}.
Remark: we can consider elements of the automorphism group as isomorphisms of
the underlying dessins.

To see this, think about the action of Aut(M) on a dessin. In particular, h ∈ GM is
in Aut(M) if h commutes with both σ and α, which means that h respects incidence
and ordering of edges at both black and white vertices, as well as incidences of
vertices and edges to faces. Thus, we can think of the automorphism group of a
combinatorial map as the automorphism group of the embedded dessin underlying
the constellation. In fact, most combinatorial maps have trivial automorphism group
Aut(M) = {id}.
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Since Aut(M) < G, we have that f is injective, since two combinatorial maps in
the same isomorphism group must come from either different labelings of the same
dessin or from labelings of isomorphic dessins. Furthermore, f is surjective, since
we can take any combinatorial map and use the second construction of Section 3.1
to find an appropriate dessin. Thus, we have that the set of dessins d’enfants is
bijective to the set of combinatorial maps via the natural bijection f .

4. An Intermediate Topological Part

Now that we have turned our dessin into a constellation, we move to the third
equivalent set: isomorphism classes of Riemann surfaces over Q. On the way, we
move through an equivalent set: isomorphism classes of coverings of the complex
sphere C = C ∪ {∞} ramified at three points. To explore this equivalence, we first
must define ramified and unramified coverings.

4.1. Covering the Sphere.

Definition 4.1. Let X and Y be two path-connected topological spaces, with a
continuous mapping f : X → Y between them. We say that the triple (X, Y, f) is an
unramified covering, which we’ll call just a covering, of Y by X if for any y ∈ Y there
exists a neighborhood V of y such that the preimage f−1(V ) ⊂ X is homeomorphic
under f to V × S, where S is a discrete set. In this case, we call the function f the
projection from X to Y .

Note that often, due to laziness or abuse of language, the function f is called a
covering when X and Y are clear from context.

Definition 4.2. Given a covering (X, Y, f), we call the connected components of
f−1(V ) the sheets of the covering over V , the preimage f−1(y) the fiber over y, and
the cardinality of S—i.e., the number of sheets in the covering—the degree, which
we denote deg(f).

Example. For instance, in Figure 14, the circle X = S1 equipped with the map
f(q) = q8 is an unramified covering of itself, where q = e2πiz.

Figure 14. An unramified covering of the circle.
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However, there are times when we have a covering that is unramified except for a
few points.

Definition 4.3. Suppose we have a triple (X, Y, f) which satisfies Definition 4.1 at
all but a finite set of points {y1, . . . , yn} in Y , at which f is continuous, and the fiber
above yi has deg(f) points xij when counting with multiplicity for all yi and for a
neighborhood Vi of yi, the preimage f−1(Vi \ {yi}) =

⊔
(Uj \ {xij}) where Uj \ {xij}

is isomorphic to a punctured disk. We call such an object a ramified covering of Y
by X.

Note that by multiplicity, we mean the number of times the same point appears
on different sheets of the covering. For instance, if some xij over yi is contained in 3
sheets of the covering, then xij has multiplicity 3.

We then say that the points {yi} are critical values or ramification points, their
preimages {xi} are critical points.

Definition 4.4. Two ramified coverings f1 : X1 → Y and f2 : X2 → Y are isomor-
phic if there exists an orientation preserving homeomorphism u : X1 → X2 such that
the following diagram is commutative:

X1 X2

Y

u

f1 f2

Now, we prove that the sets of dessins and coverings ramified at 3 points are in
bijection.

4.2. Dessins as Coverings.
We construct a map f : {dessins} → {coverings of C ramified at 3 points}. To

do this, we first triangulate the dessin.
Place a vertex ∗ in the center of every face and connect it to the black vertices

adjacent to its face with dashed lines and to the white vertices with dotted lines (see
Figure 15)

6

23

5

∗

Figure 15. Triangulation of one of the faces in Figure 12.
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We’ll color these triangles by their orientation: we note that each triangle has
three vertices: •, ◦, and ∗, and three sides: plain, dotted, and dashed. Starting at
the black vertex, travel counterclockwise around the boundary of the triangle: if the
next vertex is white, we call the triangle positive. If the next vertex is the star, we
call the triangle negative. By convention, we shade the positive triangles.

Note that the positive triangles are in bijection with the edges of the dessin. This
is fairly easy to see: each edge belongs to two triangles, a positive one and a negative
one, where the positive one will be on the left as we exit the black vertex. Thus,
we can think of the label for a edge as being inside the positive triangle to which
it belongs. Then, the action of φ become immediately visible: it sends the positive
triangles of a face around in the counterclockwise direction.

We can triangulate the elementary dessin as well. We have only one edge, so there
is only one face: placing a star in the middle of this face (i.e. at the point at infinity)
and connecting it to the black and white vertices, we get two triangles: one negative,
one positive, which correspond to the two hemispheres, as we see in Figure 16.

∗

Figure 16. Triangulation of the elementary dessin.

Given a triangulation of a dessin M , we thus construct a covering of the sphere
C by sending the black vertices of M to 0, the white vertices to 1, and the star
vertices to ∞. Since three points determine a triangle on the triangulated dessin,
the positive triangles of the dessin are sent to the upper hemisphere of C and the
negative triangles to the lower hemisphere, with all edges sent to the real line, R.
Note that this construction gives us a continuous mapping to C. Thus, we have a
covering of the sphere with only three ramification points: 0,1, and ∞.

4.3. Coverings as Dessins.
To create the inverse map

f−1 : { coverings of C ramified at three points} → {dessins},
we start with a covering of the elementary dessin, ramified only at 0, 1, and ∞.
Place a black vertex for each point in the preimage of 0 and a white vertex for each
in the preimage of 1. We then add edges between these vertices, noting that the
ordering of edges at a vertex must respect the ordering of sheets in the cover, and we
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have a map, which will be embedded on the surface that is the covering. Note that
since the covering can be triangulated as a covering of the elementary dessin, we are
guaranteed that the faces of the resulting dessin will be homeomorphic to disks, so
this dessin will be legally embedded on the covering surface.

Furthermore, we can see that f is a bijection: any two isomorphic covering spaces
must come from isomorphic dessins, so f is injective. Also, under the construction
of Section 4.3, we can find a dessin M which maps to any covering in the set, so f
is surjective, and f−1 is the inverse function.

5. The Algebraic Geometry Part

To get all the way to the third set of Theorem 1.1, we need to relate these ramified
coverings to Bely̌ı maps. To start, we define Riemann surfaces.

Definition 5.1. A Riemann surface is a complex analytic manifold of complex di-
mension one. Here, we only care about compact, connected Riemann surfaces, which
we will just call Riemann surfaces.

Definition 5.2. We say that two Riemann surfaces are isomorphic if there exists a
biholomorphic bijection, i.e. a complex isomorphism, between them.

Note: by convention, we call the one-point compactification of the complex plane,
C = C∪{∞} the Riemann complex sphere. This is the same surface as the complex
projective line CP1.

Note that complex isomorphisms are not the same thing as topological isomor-
phisms (homeomorphisms). Two surfaces which are complex isomorphic are also
topologically isomorphic, but the reverse is false. For example, all Riemann sur-
faces of genus one with a marked point, called elliptic curves (see section 7) are
topologically isomorphic, but not complex isomorphic.

This dilemma raises the question: how do we specify a particular Riemann surface?
In fact, there are two natural options: we can either define it by a system of poly-
nomial equations in a complex projective space, or we can define it by a particular
ramified covering of C.

To explain either of these, we first need one more definition.

Definition 5.3. Let X be a Riemann surface. Then we say a holomorphic function
f : X → C is a meromorphic function on X. We say that points x ∈ X such that
f(x) = 0 are zeros and points x ∈ X such that f(x) =∞ are poles.

For example, meromorphic functions on C look like rational functions with obvious
zeros and poles. If we have a function on C with only one pole at ∞, we have a
polynomial.
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Theorem 5.4. A Riemann surface can be described as an algebraic curve in a com-
plex projective space, i.e. by a system of polynomial equations over that space.

We omit the proof here, noting that it is in [5, Appendix B, §3].

Definition 5.5. If we can express a Riemann surface X with a system of equations
with coefficients in a subfield K ⊂ C, then we say that X is defined over K.

Proposition 5.6. A nonconstant meromorphic function f : X → C considered as a
mapping of X as a topological space, gives us a ramified covering of C by X.

Proof. Follows directly from the fact that f is meromorphic. �

With the fact that there exists such a meromorphic function on every Riemann
surface [7, 1.6], we have that every Riemann surface may be represented as a ramified
covering of C. So, we can create a mapping:

g : {Riemann surfaces with mero. functions to C ramified at three points}
↓

{coverings of C ramified at three points}.(5.1)

Thus, we can extend our notions from ramified coverings up to Riemann surfaces
together with particular meromorphic functions, so we can denote a ramified covering
of C by (X, f). Choose local coordinates around x ∈ X and y = f(x) ∈ C such that
x 6= ∞ and y 6= ∞. Then x is a critical point and y a critical value if and only if
f ′(x) = 0. If x is critical, we can choose local coordinates such that x = 0, y = 0, and
f looks like f(s) = sd in the local coordinate. We then call d the degree, multiplicity,
or order of the critical point. We furthermore call the set of critical values in C the
ramification locus.

Definition 5.7. Two complex ramified coverings (X1, f1) and (X2, f2) over C are iso-
morphic if there exists a complex isomorphism u : X1 → X2 such that the following
diagram is commutative.

X1 X2

C

u

f1 f2

Note that while isomorphic complex ramified coverings must have isomorphic Rie-
mann surfaces, the converse is not true, since the same Riemann surface can give dis-
tinct non-isomorphic coverings using different meromorphic functions f1, f2 : X → C,
so we do need to include the data of the meromorphic function.
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To determine whether two meromorphic functions give the same covering, we note
that the only isomorphisms of C are the linear fractional transformations

z 7→ az + b

cz + d
.

So, two meromorphic functions f1 and f2 give isomorphic coverings if and only if

f1(z) = f2

(
az + b

cz + d

)
for some a, b, c, d such that ad− bc 6= 0.

We know already that we can take a Riemann surface and represent it as a ramified
covering of the complex sphere, so g in (5.1) is injective; this raises the question of
whether the converse is true. Can we take a ramified covering of the complex sphere
and represent it as a Riemann surface with an appropriate map? In fact, we can.

Theorem 5.8. (Riemann’s existence theorem) Given a constellation [g1, . . . , gk], gi ∈
Sn, there exists a compact Riemann surface X and a meromorphic function f : X →
C such chosen points y1, . . . , yk ∈ C are the critical values of f and g1, . . . , gk are the
corresponding generators of the monodromy group. Furthermore, this construction is
unique up to isomorphism on both sides.

Proof. See [7, §1.8] �

Then, the covering of C related to that constellation is equivalent to the resulting
Riemann surface, so, if we set k = 3, we get that g in (5.1) is also surjective, up
to isomorphism. In fact, we have just proven the rest of the second bijection in
Theorem 1.1: given a pair (X, f) in the first set of 5.1 with three ramification points,
we can assume, without loss of generality, that these points are 0, 1,∞. (See the
construction in Theorem 6.1). We then note that our pair (X, f) is actually a Bely̌ı
map.

Definition 5.9. A Bely̌ı function is a meromorphic function f : X → C that is
unramified outside of {0, 1,∞}. and say that (X, f) is a Bely̌ı pair.

Noting that the notion of isomorphism on Bely̌ı pairs is equivalent to that on
complex ramified coverings, we rephrase it as follows.

Definition 5.10. We say that two Bely̌ı pairs (X1, f1) and (X2, f2) are equivalent if
there exists an isomorphism φ : X1 → X2 such that f2 ◦ φ = f1.

So the first set in (5.1) is the same as the third set in Theorem 1.1, so then, our
bijection g is actually

g : {Bely̌ı pairs} → {coverings of C ramified at three points},
up to isomorphism on both sets.
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However, just as we saw that only some coverings can be related to our dessins,
the same is true for Riemann surfaces, so we need a way to determine if a Riemann
surface is a suitable candidate for creating a map. Our solution was discovered by
Bely̌ı, and is the subject of the next section.

6. Bely̌ı Theorem

We spend this section proving Theorem 1.2, which we state more precisely below.

Theorem 6.1. Let X be a Riemann surface. Then X is defined over Q if and
only if there exists a meromorphic function f : X → C which is unramified outside
of {0, 1,∞}. Furthermore, if such a function f exists, it can be chosen to also be
defined over Q.

Proof. We here prove the more illuminating “Only If” part of the proof: suppose we
have a Riemann surface X defined over Q. Following the proof provided in [7, §2.6],
we proceed in three steps to construct an appropriate f .

Step 1: take any meromorphic function h : X → C defined over Q. Look at the
critical values of h: some will be rational, others irrational. Taking only the irrational
(algebraic) points, consider also their conjugates and call this set S0. Let |S0|= n.

Step 2: let P0 be the polynomial which annihilates S0, noting that P0 is defined over
Q and that degP0 = n. Considering the critical values (the roots of the derivative) of
P0, we note that there can be at most n− 1 of them: let this set be called S1, noting
that it already contains the conjugates of its elements, with annihilating polynomial
P1. We then proceed similarly, until we have a set {P0, . . . , Pn−1}. Taking the
composition of all of these,

Pn−1 ◦ · · · ◦ P1 ◦ P0,

we see that it sends all the critical values of the original function h to rational points.
Note that we don’t have to do anything about the rational values, because all the
coefficients of each polynomial are rational, so they automatically go to rational
points.

Step 3: Now, we just need to push all our critical points into the set {0, 1,∞},
which we can do by applying affine transformations. First, apply an affine transfor-
mation A sending all the points into the segment [0, 1]. Let pm,n(x) be the polynomial

pm,n(x) =
(m+ n)m+n

mmnn
xm(1− x)n.

Then, pm,n(0) = 0, pm,n(1) = 0, pm,n(∞) =∞, and pm,n
(

m
m+n

)
= 1, while preserving

the segment [0, 1]. So, applying a sufficient number of such functions, since we have
a finite number of critical values, will move all the critical values to either 0, 1, or
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∞, and the resulting composition

pmini
◦ · · · pmknk

◦ A ◦ Pn−1 ◦ · · · ◦ P1 ◦ P0 ◦ h
is a Bely̌ı function for X.

Note that this is not the most efficient way to find a Bely̌ı function, but it does
always work.

The other direction of the proof requires heavy machinery which we choose not to
cover here; interested readers may consult [7, §2.6]. �

7. The Number Theoretic Part

In particular, genus one dessins d’enfants can be transformed into Riemann sur-
faces of genus one, which are equivalent to a number theoretic object called elliptic
curves. We only touch on the bare basics of this subject here; see [8] for a more
thorough treatment.

Definition 7.1. Riemann surfaces of genus one with a specified base point are elliptic
curves. By [8, Ch. 3], we know that elliptic curves are defined by equations that
look like

E : {y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6} ∪ {∞}.

Any such equation is called a Weierstrass equation, but note that there are many
Weierstrass equations which describe a single elliptic curve.

Provided E is defined over a field K where char(K) 6= 2, we can easily rearrange
this equation with the substitution

y 7→ 1

2
(y − a1x− a3)

to get an equation of the form

E : y2 = 4x3 + b2x
2 + 2b4x+ b6.

Also, if char(K) 6= 2, 3, we can do a second substitution

(x, y) 7→
(
x− 3b2

36
,
y

108

)
that gives us the simpler form

E : y2 = x3 − 27c4x− 54c6,

where c4, c6 are defined below.
Elliptic curves have all sorts of identifying characteristics, among them several

interesting invariants.

Definition 7.2. The j-invariant is an invariant of an elliptic curve that classifies
them up to complex isomorphism.
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We calculate the j-invariant as follows:
Define the quantities:

c4 = b2
2 − 24b4

c6 = −b3
2 + 36b2b4 − 216b6

∆ =
c3

4 − c2
6

1728

Note that ∆ is called the discriminant for that particular Weierstrass equation.
Then we calculate the j-invariant by

j =
c3

4

∆
.

Note that the j-invariant does not depend on the choice of equation to define the
elliptic curve.

8. A Cool Example

One of the typical problems, however, in this area is the lack of computability: we
know that we can take a genus one dessin d’enfant and produce an elliptic curves,
but which elliptic curve? Can we calculate its j-invariant? To explore these issues,
we follow the entire process of computation for a particularly nice dessin.

Let M be the dessin in Figure 17.

1

32

4

Figure 17. The dessin M .

Since we need to make the half-edges travel around the black vertex in counter-
clockwise order, we wind up with a map of genus one.. So, M embeds onto the torus
as described in Figure 18.
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2
4

3

1

Figure 18. The dessin M on the torus.

To make the rest of the calculations more intuitive, we choose to represent the
torus in a different standard way: as a square with opposite sides identified in the
same direction, in which case our map looks like that in Figure 19.

∧

>>

>>

∧
4

1

2

3

Figure 19. Another way to view the torus with M embedded.

From here, we calculate our permutations to get the combinatorial map associated
to M . Reading off half-edges around the two white vertices,

α = (1, 3)(2, 4).

Then, reading off the half-edges around our black vertex,

σ = (1, 2, 3, 4).

So, by our definition,

φ = α−1σ−1

= (1, 3)(2, 4)(1, 4, 3, 2)

= (1, 2, 3, 4)

Thus, our combinatorial map is [(1, 2, 3, 4), (1, 3)(2, 4), (1, 2, 3, 4)].
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If we take Figure 19 and triangulate it as in Section 4, adding in the star vertex in
the middle of the single face, then connecting black and white vertices to the star,
we can see the meaning of φ for the face a bit more clearly, as in Figure 20.

∧

>>

>>

∧
4

1

2

3

∗∗

∗∗
Figure 20. M triangulated.

Notice that the positive triangles are already labelled, since the labels for their
associated black-to-white edges were on the left bank and are thus already inside the
triangle.

Furthermore, we can think of the identification of the sides as the action of two
translations: one moving vertically, one horizontally. This allows us to view this
expression of the torus as the fundamental domain of the action of the group Λ
generated by these translations over the complex plane. That is to say, we can tile
the plane with copies of this fundamental domain by these translations, as shown in
Figure 21.

We then note that our original square, now centered at the black vertex at
(

1
2
, 1

2

)
in Figure 21, is a fundamental domain for this tiling, since it contains a single copy
of every labelled positive triangle. This domain, which we will call D, makes clear
that the two translations generating Λ are z 7→ z + i and z 7→ z + 1. That is to say,
Λ = Z⊕ iZ.

Note that Z⊕ iZ has an extra automorphism in the plane: we can map [z] 7→ [iz]
and retain the same lattice, .i.e. Λ = iΛ, so our lattice is special.

Now that we have identified what the appropriate covering space should be, we
need a Bely̌ı function that will take our fundamental domain, and thus the entire
tiling determined by our lattice, to the elementary hypermap on the one-point com-
pactification of the sphere. That is to say, we need to find a meromorphic function
f on C/Λ such that D = f−1([0, 1]) where the black vertices map to 0 and the white
to 1. If we can find such an f , it will follow that the Riemann surface associated to
the map as a covering space is SD = C/Λ and that fD = f .
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1

2

3

4

4 4

1 1

1

2

22

3

3 3

H

N

J I

∗∗

∗∗

Figure 21. Tiling the plane with this fundamental domain.

Based on the previous exploration of Bely̌ı maps on lattices, as explored in [6], we
guess that our function is going to involve the Weierstrass ℘ function, so we check
its action on the lattice. Recall that the Weierstrass ℘ function is defined as

℘(z) =
1

z2
+
∑

06=ω∈Λ

(
1

(z − ω)2
− 1

ω2

)
.

Substituting iz for z produces the identity

℘(iz) = −℘(z),(8.1)

as we can see by calculating:

℘(iz) =
1

(iz)2
+
∑

06=ω∈Λ

(
1

(iz − ω)2
− 1

ω2

)
= − 1

z2
+
∑

06=ω∈Λ

(
1

(iz − iω)2
− 1

iω2

)
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since we can already noticed that iΛ = Λ, so we can shift the indexing of the lattice
points

= − 1

z2
−
∑

06=ω∈Λ

(
1

(z − ω)2
− 1

ω2

)
= −℘(z)

We can do the same thing with the derivative to get an additional identity. Clearly,

℘′(z) = − 1

z3
−
∑

0 6=ω∈Λ

1

(z − ω)3
.

Then, we substitute in iz as before and get the identity

℘′(iz) = i℘′(z),(8.2)

since

℘′(iz) = − 1

(iz)3
−
∑

06=ω∈Λ

1

(iz − ω)3

=
1

i3
· −1

z3
−
∑

06=ω∈Λ

1

(iz − iω)3

by the same shifting argument as above, so we get

= i
1

z3
− 1

i3

∑
06=ω∈Λ

1

(z − ω)3

= i℘′(z)

We know that f has to respect the single automorphism on the lattice, i.e. f(iz) =
f(z), so we claim that the function we are looking for is f = c℘2, where c ∈ R is a
constant that we will determine later.

We first check to see that this f respects the automorphism z 7→ iz:

c℘2(iz) = c(−℘(z))2 = c℘2(z)

by the identity (8.1).
In order to check that this function works as a Bely̌ı function, we need to verify

that it sends every edge in the graph to the segment [0, 1], that it sends black vertices
to 0, that it sends white vertices to 1, and that it sends the star vertex to the pole.

Remark. Note first that by definition of a Weierstrass function,

℘(z) = ℘(z + 1) = ℘(z + i),(8.3)

by [8, Ch. 3].
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Furthermore, it suffices to check that most of these properties hold for ℘2, ignoring
the constant, since c ∈ R.

We start with the edges:

• ℘2(R) ⊂ R and ℘2(iR) ⊂ R. These are the horizontal and vertical bound-
aries of D, respectively. By the above Remark, it suffices to check the lower
horizontal and the leftmost vertical, i.e. the real and imaginary axes.

To see this, we recall that if z = z for z ∈ C, then z ∈ R. Then, given
x ∈ R, we have that

℘(x) =
1

x2
+
∑

06=ω∈Λ

(
1

(x− ω)2
− 1

ω2

)
=

1

x2
+
∑

06=ω∈Λ

(
1

(x− ω)2
− 1

ω2

)
= ℘(x)

where the second statement follows from the fact that Λ = Λ by reindexing.
Thus, we’re done, since

℘2(x) =
(
℘(x)

)2

= ℘2(x).

Similarly, using identity (8.1)

℘2(ix) =
(
℘(ix)

)2

=
(
−℘(x)

)2

= (−℘(x))2 = ℘2(ix).

4

1

2

3

∗∗

∗∗
Figure 22. Covering the sides.

• ℘2(
√
iR) ⊂ R and ℘2(−

√
iR) ⊂ R. These are the diagonals corresponding

to Re(z) = Im(z) and Re(z) = −Im(z), respectively, where we translate the
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second one to match the second diagonal in D.

℘(
√
ix) =

1

(
√
ix)2

+
∑

06=ω∈Λ

 1(√
ix− ω

)2 −
1

ω2


=

1

ix2
+
∑

06=ω∈Λ

(
1(

−
√
ix+ ω

)2 −
1

ω2

)
by reindexing, since Λ = −Λ. Then, we have

=
1

(
√
ix)2

+
∑

06=ω∈Λ

(
1(√

ix− ω
)2 −

1

ω2

)
= ℘(

√
ix).

So as before,

℘2(
√
ix) = ℘2(

√
ix).

Similarly, we can use the identity (8.1) to show that

℘2(−
√
ix) =

(
℘(−
√
ix)
)2

=
(
−℘(
√
ix)
)2

=
(
−℘(
√
ix)
)2

= ℘2(−
√
ix).

4

1

2

3

∗∗

∗∗
Figure 23. Covering the diagonals.

• ℘2({Re(z) = 1
2
}) ⊂ R and ℘2({Im(z) = 1

2
}) ⊂ R. These are the cross-bars of

D, vertical and horizontal, respectively. Consider z = 1
2

+ ix, for some x ∈ R.
A series of elementary calculations similar to those above give us

℘2

(
1

2
+ ix

)
= ℘2

(
−1

2
+ ix

)
= ℘2

(
1

2
+ ix

)
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where the second equality comes from applying the identity (8.3). Similarly,
we calculate

℘2

(
x+

1

2
i

)
=

(
−℘
(

1

2
− ix

))2

= ℘2

(
1

2
− ix

)
= (−1)2℘2

(
1

2
− ix

)
= ℘2

(
x+

1

2
i

)

4

1

2

3

∗∗

∗∗
Figure 24. Covering the middle edges.

Now that we’ve shown that all edges are sent to the real line, it remains to show
that the vertices behave as desired.

• The Weierstrass function ℘ has only one pole, located at z = [0], so ℘2 only
has one pole, again located at z = [0] = [?], so ℘(?) =∞ as desired.
• Our black vertex should be the sole zero of ℘2. We know that [•] =

[
1
2

+ 1
2
i
]
,

so we check:

℘

(
1

2
+

1

2
i

)
= ℘

(
i

(
1

2
− 1

2
i

))
= −℘

(
1

2
− 1

2
i

)
= −℘

(
1

2
+

1

2
i

)
,

where the middle equivalence is due to identity (8.1) and the right one to
identity (8.3). Thus, we have that ℘

(
1
2

+ 1
2
i
)

= 0, and thus that

℘2

(
1

2
+

1

2
i

)
= 0.

• The last set of vertices are the two white ones, [◦1] =
[

1
2

]
and [◦2] =

[
1
2
i
]
,

which we claim are the ramification points of ℘. By [4, §2.2.1], ℘ satisfies the
algebraic relation

℘′
2
(z) = 4℘3(z)− g2℘(z)− g3.
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Using identities (8.1) and (8.2), we get also that

℘′
2
(z) = 4℘3(z)− g2℘(z) + g3,

so we have that g3 = 0 and therefore, g2 6= 0. Furthermore, for any ramifica-
tion point z, we then have that

℘2(z) =
g2

4
.

Since we want our ramification points to go to 1 under f , we know that our
constant c = 4

g2
. We know that our curve can only have two ramification

points, since

0 = ℘(z)(4℘2(z)− g2)

gives us three solutions: the two points sent to g2
4

and the single zero. Thus,
we check our white vertices; since neither is 0, we can refigure the equation
for the ℘′ into

℘′(z) = −
∑
ω∈Λ

1

(z − ω)3
.

Then, if we take z = 1
2
, we get

℘′
(

1

2

)
= −

∑
ω∈Λ

1(
1
2
− ω

)3

= −
∑
ω∈Λ

Re(ω)< 1
2

1(
1
2
− ω

)3 −
∑
ω∈Λ

Re(ω)> 1
2

1(
1
2
− ω

)3 .

We then can rephrase the first sum, since for ω such that Re(ω) < 1
2
, ω =

1− ω′ for some unique ω′ such that Re(ω′) > 1
2
.

= −
∑
ω∈Λ

Re(ω)> 1
2

1(
−1

2
+ ω

)3 −
∑
ω∈Λ

Re(ω)> 1
2

1(
1
2
− ω

)3 .

=
∑
ω∈Λ

Re(ω)> 1
2

1(
1
2
− ω

)3 −
1(

1
2
− ω

)3 = 0.
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Similarly, for the other white vertex, we split along the line z = 1
2
i:

℘′
(

1

2
i

)
= −

∑
ω∈Λ

1(
1
2
i− ω

)3

= −
∑
ω∈Λ

Im(ω)< 1
2

1(
1
2
− ω

)3 −
∑
ω∈Λ

Im(ω)> 1
2

1(
1
2
− ω

)3 .

Rephrasing the first sum, since for ω such that Im(ω) < 1
2
, ω = i − ω′ for

some unique ω′ such that Im(ω′) > 1
2
.

= −
∑
ω∈Λ

Im(ω)> 1
2

1(
−1

2
i+ ω

)3 −
∑
ω∈Λ

Im(ω)> 1
2

1(
1
2
i− ω

)3 .

=
∑
ω∈Λ

Im(ω)> 1
2

1(
1
2
i− ω

)3 −
1(

1
2
i− ω

)3 = 0.

Thus, [◦1] and [◦2] are ramification points for ℘2, and since we only have two
ramification points, we have all of them.

Therefore, we have shown that the fundamental domain D is mapped to the ele-
mentary hypermap as desired, with the black triangles mapping to H+ and the white
to H−.

So, our Bely̌ı pair is

(SD, fD) =

(
C

Z + iZ
,

4

g2

℘2

)
.

Furthermore, we can identify the elliptic curve corresponding to this surface by
sending ℘ 7→ X and ℘′ 7→ Y , so by [8], this surface is equivalent to the Bely̌ı pair(

{y2 = 4x3 − g2x},
4

g2

x2

)
,

which is isomorphic to the Bely̌ı pair(
{y2 = x3 − x}, x2

)
,

with j-invariant j = 1728.

9. A Not So Nice Example

Just to demonstrate that these equivalences work for more than just the really
nice cases, an example of a slightly more complicated dessin is M shown in Figure
25.
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4

1

2

6

3

5

Figure 25. A slightly more complicated dessin.

We already calculated the combinatorial map for this dessin in Section 3: it is

[σ, α, φ] = [(1, 2, 3, 4, 5, 6), (1, 4)(2, 6)(3, 5), (1, 3, 4, 6)(2, 5)].

Furthermore, the corresponding Bely̌ı pair, as computed by matrix model compu-
tations in [1], is (

{y2 = x(x+ 3)(x− 1)}, 4x3

27(x− 1)

)
,

which has j-invariant j = 35152
9

.
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